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Abstract. The paper investigates the concatenation model incorporating the Kerr law of 

self-phase modulation and Hamiltonian perturbations, along with the effect of 

multiplicative white noise. The F-expansion algorithm is implemented to derive the 

solutions for the model, thus yielding a full spectrum of optical solitons. The parameter 

constraints that naturally emerge from the scheme are also listed.  
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1. Introduction

First introduced in 2014, the concatenation model has 

been the focus of ongoing research, initially investigating 

its integrability and exploring rogue wave phenomena 

[1, 2]. Since then, subsequent studies have delved deeper 

into various aspects of the model, including conservation 

laws, quiescent solitons with nonlinear chromatic 

dispersion (CD), trial equation methods, undetermined 

coefficients, and the application of Kudryashov’s 

integration schemes to address issues related to 

differential group delay. These studies represent just a 

fraction of the broader research aimed at fully 

understanding the concatenation model [1–5]. 

This paper specifically examines the concatenation 

model under the influence of multiplicative white noise. 

It employs an analytical approach to explore the model 

and uncover new insights: the F-expansion method. This 

methodology facilitates the discovery of soliton solutions 

in the presence of white noise. Some preliminary 

approaches to the model were implemented earlier, 

which yielded soliton solutions [6–9]. By selecting 

specific parameter values, the paper reveals a wide 

spectrum of optical solitons as well as complexiton 

solutions. Notably, the study reveals that white noise 

primarily affects the phase component of the solitons. 

The detailed analysis and results, along with their 

derivations, are exhibited in subsequent sections. 

1.1. Governing model 

The model in [1] illustrates the stochastic perturbed 

concatenation in a dimensionless manner. It includes 

Kerr-law nonlinearity and multiplicative white noise as 

defined by Itô, constituting a combination of three well-

known models:  

  (1)

Here, q(x, t) is a complex-valued function. The first term 

represents linear temporal evolution, where . 

Constants a and b denote CD and Kerr-law nonlinearity, 

respectively. Parameters cj for j = 1, 2 and δk for k = 

1, 2,…,9 are constant coefficients, c1 and c2 are real-

valued. By setting c1 = c2 = 0, we obtain the NLSE; by 

setting c2 = 0 and c1 ≠ 0, we obtain the Lakshmanan–

Porsezian–Daniel model; and by setting c1 = 0 and c2 ≠ 0, 

we have the Sasa–Satsuma model. The model (1) illustrates 

soliton propagation in optical fibers, combining three known 

equations. The standard Wiener process W(t) is included, 

with σ as the noise strength coefficient and W(t)/dt as 

white noise. The coefficient for inter-modal dispersion is 

α, self-steepening is λ, and self-frequency shift is β. 
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2. F-expansion procedure

Consider the model equation: 

  (2) 

Regarding the optoelectronic wave field q = q(x, t), x is 

the spatial variable, and t is the temporal variable. 

With account of the constraints 

  (3) 

In this context, ξ is the wave variable, μ is the wave 

width, and υ represents the wave velocity. As a result, 

Eq. (2) evolves into 

  (4) 

Step 1: With account of (4), the simplified model 

confirms the solution structure 

  (5) 

with the help of the ancillary equation 

  (6) 

Accordingly, the soliton wave profiles obtained from (6) 

are outlined below  

 (7) 

where sn(ξ), ns(ξ), cn(ξ), ds(ξ), and dn(ξ) denote Jacobi 

elliptic functions associated with a modulus, 0 < m < 1. 

Additionally, the constants Bi (for i from 0 to N) stem 

from the balancing approach described in (4). 

Step 2: Through the inclusion of (5) and (6) into (4), 

we create a system of equations that allows for the 

determination of the constants not specified in (4) via (7). 

3. Optical solitons

By adopting the following solution form, we secure the 

solution to Eq. (1):  

  (8) 

where , representing the variable of the wave, is set as 

  (9) 

To clarify further, υ denotes the speed of the soliton, 

and  represents the amplitude component. The phase 

component  is then expressed as:  

(10) 

Here, κ, ω, σ, and θ0 stand for the frequency of the 

solitons, wave number, noise coefficient, and phase 

constant, respectively. Equation (1) is rewritten by 

substituting (8) and then separated into its imaginary and 

real components, leading to 

and 

(12)

To determine the speed of solitons, we analyze the 

imaginary component as follows: 

(13) 

with constraints on parameters 

(14) 

and 

(15) 

Eq. (11) reduces to 

(16) 

with 

(17) 

The balancing between U(iυ) and U5 in Eq. (16) 

establishes N = 1, thereby expressing the solution as: 

(18) 

By substituting (18) with (6) into (16), we derive the 

equations: 

  (19) 
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The outcomes are uncovered upon solving these 

equations (19):  

(20) 

Result 1: 

Based on (7), Eq. (20) changes into 

(21) 

The dark and singular soliton solutions are 

formulated, in conclusion, as 

and 

The wave forms given by equations (22) and (23) 

are determined by the parameter constraints: 

(24) 

Result 2: 

Using (7), Eq. (20) evolves into 

Thus, the form of the solution for the bright soliton is 

The wave form described in (26) is governed by the 

constraint relations: 

(27) 

Result 3: 
With (7) being employed, Eq. (20) is changed to 

Therefore, the solution representing the singular 

soliton is  

The wave form depicted in (29) is determined by 

the constraint relations:  

(30) 

Result 4: 

Applying (7), Eq. (20) takes the form 

(31) 
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The solution for the straddled singular-singular 

soliton in this case is  

(32) 

In addition, the representation of the complexiton 

solution is  

(33) 

Also, the solution for the straddled dark-bright 

soliton is  

(34) 

The wave forms described in (32)–(34) adhere to 

the parametric restrictions:  

(35) 

4. Conclusions

This paper investigates the concatenation model in the 

presence of white noise. An integration approach, namely 

the F-expansion method, is employed to reveal soliton 

solutions for the model. Soliton solutions are obtained by 

choosing specific parameter values. Additionally, this 

approach provides a comprehensive spectrum of optical 

soliton solutions. A novel observation in this paper is that 

for the concatenation model, the effect of white noise is 

confined to the phase component of the solitons. The 

findings of this study have broad implications. Future 

work will extend the model to include differential group 

delay and dispersion-flattened fibers, where white noise 

components will be introduced and analyzed using 

various integration approaches. This exploration is 

expected to yield compelling results that could 

significantly advance the field of mathematical 

photonics. Ongoing research activities will continue to 

unfold and disseminate these novel findings, aligning 

them with existing literature. 
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Оптичне збурення солітонів з моделлю конкатенації, що має мультиплікативний білий шум 

за F-розширенням 

Y. Yildirim & A. Biswas 

Анотація. У статті досліджується модель конкатенації, що включає закон Керра фазової самомодуляції та 

гамільтонові збурення, а також вплив мультиплікативного білого шуму. Для отримання розв’язків моделі 

реалізовано алгоритм F-розширення, що дає повний спектр оптичних солітонів. Також перераховано 

параметричні обмеження, які природно випливають зі схеми. 

Ключові слова: солітони, білий шум, F-розширення. 
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