Semiconductor Physics, Quantum Electronics and Optoelectronics, 3 (4) P. 427-431 (2000).
References
1. A.A. Demidenko, V.A. Kochelap, Amplification of localized acoustic waves by the electron drift in a quantum well // Semiconductor Physics, Quantum Electronics & Optoelectronics 2(1), pp.11-24 (1999). https://doi.org/10.15407/spqeo2.01.011
2. E. Madelung, Semiconductors: Group IV Elements and III-V Compounds, Springer (1990).
3. B.K.Ridley, Space charge waves and the piezoelectric interaction in 2D semiconducting structures // Semicond. Sci.Tecnol. 3, pp.542-545 (1988). https://doi.org/10.1088/0268-1242/3/6/005
4. Yu.V. Gulyaev, Surface ultrasonic waves in solids (in Russian) // Pisma v ZhETF 9(1), pp.63-65 (1969).
5. J.L. Bleustein, A new surface wave in piezoelectric materials // Appl. Phys. Lett. 13(12), pp.412-413 (1968). https://doi.org/10.1063/1.1652495
6. Yu.V. Gulyaev, V.P. Plesskii, Slot acoustic waves in piezoelectric materials (in Russian) // Akusticheskii Zhurn. 23(5),pp.716-723 (1977).
7. M.S. Balakirev, L.V. Gorchakov, Coupled surface waves in piezoelectrics (in Russian) // Fiz. Tverd. Tela 19(2), pp.612-614 (1977).
8. N. Nishiguchi, Confined and interface acoustic phonons in a quantum wire // Phys. Rev. B 50(12), pp.10970-10980 (1994). https://doi.org/10.1103/PhysRevB.50.10970
10. K. Shimada, T. Sota, K. Suzuki, First-principles study on electronic and elastic properties of BN, AlN, and GaN // J.Appl. Phys. 84(9), pp.4951-4958 (1998). https://doi.org/10.1063/1.368739
11. B.A. Glavin, V.A. Kochelap, T.L. Linnic, Generation of high-frequency coherent acoustic phonons in a weakly coupled superlattice // Appl. Phys. Lett. 74(23) (1999). https://doi.org/10.1063/1.124149