Semiconductor Physics, Quantum Electronics and Optoelectronics, 3 (4) P. 479-488 (2000).


References

1. Photovoltaics in 2010 // Office for Official Publications of the European Communities(1996).
2. W. Koch, C. Hassler, H.-U. Hofs et al., Planar solidification of multicrystalline silicon for photovoltaic applications // Solid State Phenomena,57-58, pp. 401-412 (1997).
https://doi.org/10.4028/www.scientific.net/SSP.57-58.401
3. P. Menna, Y. S. Tsuo, M. M. Al-Jassim et al., Purification of metallurgical-grade silicon by porous-silicon ething // Proc.2nd World Conf. on Photovoltaic Solar Energy Conversion.6-10 July 1998, Vienna, Austria, pp. 1232-1235.
4. M. A. Green, J. Zhao, A. Wang, 23 % module and other silicon solar cell advances // Ibid., pp. 1187-1192.
5. A. Metz, R. Hezel, Innovative process for the cost-effective production of highly efficient silicon solar cells // Ibid., pp.1890-1893.
6. M. Spiegel, H. Nussbaumer, M. Roy et al., Successful implementation of the microwave induced remote hydrogen plasma passivation in a standard multicrystalline silicon solar cell production line // Ibid., pp. 1543-1546.
7. F. Ferrazza, Growth and post growth processes of multicry-stalline silicon for photovoltaic use // Solid State Phenomena,51-52, pp. 449-460 (1996).
https://doi.org/10.4028/www.scientific.net/SSP.51-52.449
8. A. V. Shah, R. Platz, H. Keppner, Thin-film silicon solar cells: a review and selected trends // Solar Energy Mat. and Solar Cells, 38, pp. 501-520 (1995).
https://doi.org/10.1016/0927-0248(94)00241-X
9. J. Zhao, A. Wang, M. A. Green, 19,8 % efficient multicrystalline silicon solar cells with «honeycomb» textured front surface // Proc. 2nd World Conf. on Photovoltaic Solar Energy Conversion. 6-10 July 1998, Vienna, Austria, pp. 1681-1684.
10. M. A. Green, K. Emery, K. Bucher et al., Solar cell efficiency tables (Version 11) // Prog. Photovolt. Res. Appl., 6(4), pp. 35-42 (1998).
https://doi.org/10.1002/(SICI)1099-159X(199801/02)6:1<35::AID-PIP205>3.0.CO;2-5
11. A. Ya. Nashelskii, E. O. Pulner, Modern state of the silicon technology of for solar energy conversion // Visokochistiye Veschestva, 1, pp. 102-111 (1996) (in Russian).
12. A. K. Ghosh, C. Fishman, T. Feng, Theory of the electrical and photovoltaic properties of polycrystalline silicon // J.Appl. Phys., 51(1), pp. 446-454 (1980).
https://doi.org/10.1063/1.327342
13. H. J. Moller, Multicrystalline silicon for solar cells // Solid State Phenomena, 47-48, pp. 127-142 (1996).
https://doi.org/10.4028/www.scientific.net/SSP.47-48.127
14. F. Ferrazza, A. Endros, W. Koch et al., Cost effective solar silicon technology // Proc. 2nd World Conf. on Photovoltaic Solar Energy Conversion. 6-10 July 1998, Vienna, Austria,pp. 1220-1225.
15. R. McGuire, Australia: the future world solar capital? Thin-film and buried contact solar cell technology // Renewable Energy World, 3, pp. 42-49.
16. H.J. Moller, L. Long, Experimental and numerical investigation of the oxygen precipitation in mono- and multicry-stalline solar silicon // Solid State Phenomena, 69-70, pp. 315-320(1999).
https://doi.org/10.4028/www.scientific.net/SSP.69-70.315
17. E.R. Weber, S.A. McHugo, H. Hieslmair, Gettering of transition metals in multicrystalline silicon for photovoltaic applications // Solid State Phenomena, 47-48, pp. 165-170 (1996)
https://doi.org/10.4028/www.scientific.net/SSP.47-48.165
18. N. Gayhenquet, S. Martinuzzi, Efficiency of nanocavity backside gettering in multicrystalline silicon wafers // Proc. 2nd World Conf. on Photovoltaic Solar Energy Conversion. 6-10July 1998, Vienna, Austria., pp. 1599-1602
19. W. Jooss, G. Hahn, P. Fath et al., Improvement of diffusion lengths in multicrystalline Si by P-Al co-gettering during solar cell processing // Ibid, pp. 1689-1692.
20. P. Sana, A. Rohatgi, J. P. Kalejs, R. O. Bell, Gettering and hydrogen passivation of edge-defined film-fed grown multi-crystalline silicon solar cells by Al diffusion and forming gas anneal // Appl. Phys. Lett., 64(1), pp. 97-99 (1994).
https://doi.org/10.1063/1.110880
21. A. ElMoussaoui, A. Luque, Investigation of the effects of aluminum treatment and forming gas annealing on Eurosolare multicrystalline silicon solar cells // Proc. 2nd World Conf.on Photovoltaic Solar Energy Conversion. 6-10 July 1998, Vienna, Austria, pp. 1705-1708.
22. F. Duerinckx, J. Szlufcic, J. Nijs et al., High efficiency, mechanically V-textured, screen printed multicrystalline silicon solar cells with silicon nitride passivation // Ibid., pp.1248-1253.
23. S. Ostapenko, L. Jastrzebski, B. Sopori, Change of minority carrier diffusion length in polycrystalline silicon by ultrasound treatment // Semicond. Sci. Technol., 10(8), pp. 1494-1500(1995).
https://doi.org/10.1088/0268-1242/10/11/011
24. L. Schirone, G. Sotgiu, M. Montecchi, G. Righini, R. Zanoni, Stain etched porous silicon technology for large area solar cells // Proc. 2nd World Conf. on Photovoltaic Solar Energy Conversion. 6 - 10 July 1998, Vienna, Austria, pp. 276-279.
25. R.R. Bilyanov, H. Lautenschlager, R. Schindler, Multicrystal-line silicon solar cells with porous silicon selective emitter // Ibid.,pp. 1642-1645.
26. A.A. Efremov, N.I. Klyui, V.G. Litovchenko et al., Gettering processes for the preparation of silicon solar cell material // Solid State Phenomena, 69-70, pp. 285-290 (1999).
https://doi.org/10.4028/www.scientific.net/SSP.69-70.285
27. Z.T. Kuznicki, Multiinterface solar cells. 1. Limits, modeling and design // Proc. 1st Polish-Ukrainian Symp. «New Materials for Solar Cells»,21-22 Oct. 1996, Cracow - Przegorzaly, Poland, pp. 58-78.
28. W. Ermer, D. Helmreich, D. Regler, D. Seifert, Current aspects of silicon cutting techniques at Wacker // Proc. 1st Int. Photovoltaic Sci. and Engin. Conf.,13 - 16 Nov. 1984, Kobe,Japan, pp. 781-785.
29. P. Doshi, J. Mejia, K. Tate, A. Rohatgi, Modeling and characterization of high-efficiency silicon solar cells fabricated by rapid thermal processing, screen printing, and plasma-enhanced chemical vapor deposition // IEEE Trans. El. Dev.,44(9), pp. 1417-1423 (1997).
https://doi.org/10.1109/16.622596
30. J. Nijs, S. Sivoththaman, J. Szlufcik et al., Modern technologies for polycrystalline silicon solar cells // Solid State Phenomena, 51-52, pp. 461 472 (1996).
https://doi.org/10.4028/www.scientific.net/SSP.51-52.461
31. V.A. Semenovich, N.I. Klyui, V.P. Kostylyov et al., Compositional modulated DLC films for improvement of solar cell efficiency and radiation stability // J. of Chemical Vapor Deposition, 5(1), pp. 213-219 (1997).
32. S. Sivoththaman, J. Horzel, F. Duerinckx et al., High throughput processing of large area multicrystalline silicon solar cells by rapid thermal processing and screenprinting // Proc. 2nd World Conf. on Photovoltaic Solar Energy Conversion. 6-10July 1998, Vienna, Austria, pp. 1770-1773.
33. J. Jhao, A. Wong, P. Altermatt, M. A. Green, Twenty-four percent efficient silicon solar cells with double layer antireflection coatings and reduced resistance loss // Appl. Phys.Lett., 66(26), pp. 3636-3638 (1995).
https://doi.org/10.1063/1.114124
34. A. M. Goodman, A Method for the measurements of short minority carrier diffusion lengths in semiconductors // J. Appl.Phys.,32(10), pp. 2550-2552 (1961).
https://doi.org/10.1063/1.1728351
35. M. Saritas, H. D. McKell, Comparison of minority-carrier diffusion length measurements in silicon by the photoconductive decay and Surface photovoltage methods // J. Appl.Phys., 63(9), pp. 4561-4567 (1988).
https://doi.org/10.1063/1.340155
36. I. G. Hwang, D. K. Schroder, Effect of wafer stress on surface photovoltage diffusion length measurements // Solid State Electron., 36(8), pp. 1147-1153 (1993).
https://doi.org/10.1016/0038-1101(93)90195-V
37. V.A. Zuev, A.V. Sachenko, V.G. Popov, G.A. Sukach, Photoelectric methods of determination of the electrical parameters of MIS structures // Poluprovodnikovaya Technika I Microelectronika, 12, pp. 32-49 (1973) (in Russian).
38. N.L. Dmitruk, Yu.V. Kryuchenko, V.G. Litovchenko et al., Diffusion length determination by the surface photovoltage method // Phys. Status Solidi (a), 124(1), pp. 183-190 (1991).
https://doi.org/10.1002/pssa.2211240117