Semiconductor Physics, Quantum Electronics and Optoelectronics, 3 (4) P. 489-495 (2000).


References

1. V.F. Kosorotov, L.S. Kremenchoogskiy, V.B. Samoilov, L.V.Shchedrina, Pyroelectric effect and its application,(in Russian), Naukova dumka, Kiev, 1989, 324p.
2. L.S. Kremenchoogskiy, O.V. Roitsina, Pyroelectric defectors of radiation, (in Russian), Naukova dumka, Kiev, 1979, 381p.
3. L.S. Kremenchoogskiy, O.V. Roitsina, Pyroelectric receiving devices, (in Russian), Naukova dumka, Kiev, 1982, 363p.
4. S.F. Weiss, IR sensors growth predicted // Photonics spectra // June 1995. ðð.58-60.
5. N.M. Shorrocks and I.M. Edwards, Design and performance of thermal imaging arrays // Proc. 7th Int. Symp. Appl.Ferroelectrics, ²EÅÅ // pp. 58-62, (1990).
6. J.M. Íårbert, Ferroelectric transucers and sensors // Gordon and breach science publishers Inc. // pp. 266-240, (1983).
7. R.W. Whatmore, Pyroelectric ceramics and devices // in Electron, Ñeram. edited by B, C. Í. Steele, Elsevier, London, pp. 169-184, (1991).
8. R.W. Whatmore. Pyroelectric ceramics and devices for thermal infrared detection and imaging // Ferroelectrics // vol.118, pp. 241-259, (1991).
https://doi.org/10.1080/00150199108014764
9. A.S. Bhalla, C.S. Fang and L.E. Cross, Pyroelectric properties of alanine and Deuterium substituted TGSP and TGSAs single crystals // Maier. Lett. // vol. 3, pp. 475-477, (1985).
https://doi.org/10.1016/0167-577X(85)90092-8
10. R. L. Byer and C. B. Roundy, 'Pyroelectric coefficient direct Measurement technique and application to a NSEC response time detector // Ferroelectrics // vol. 3, ðð. 333-338,(1972).
https://doi.org/10.1080/00150197208235326
11. R.W. Whatmore, P.C. Osbond and N.M. Shorrocks, Ferroelectric materials for thermal IR detectors // Ferroelectrics // vol. 76, pp. 351-367, (1987).
https://doi.org/10.1080/00150198708016956
12. S.T. Liu, J.D. Heaps and O.N. Tufte, The pyroelectric properties of the Lanthanum-doped ferroelectric PLZT ceramics // Ferroelectrics // vol. 3, pp. 281-285, (1972).
https://doi.org/10.1080/00150197208235319
13. K.K. Deb, Investigation of pyroelectric characteristics of mollified PbTiO, ceramics for improved IR detector performance // Ferroelectrics // vol. 88. pp. 167-176, (1988).
https://doi.org/10.1080/00150198808245164
14. P.C. Osbond and R.W. Whatmore, Improvements to pyroelectric ceramics via strontium doping of the lead zirconatelead iron Niobate-lead titanate system // Ferroelectrics // vol.118, pp. 93-101, (1991).
https://doi.org/10.1080/00150199108014749
15. A. Kanduser, M. Koseñ, A. Levstic and Â.B. Lavrencic, Pb5Ge3O11cåràm³ñs pyroeleclric detector // Proc. 7th Int.Symp. Appl, Ferroelectrics // IEEE, pp. 383-386, (1990).
16. C. Ye, T. Tamagawa and D.L. Polla, Experimental studies on primary and secondary pyroelectric effects, in Pb1-xZrxTiO3,PbTiO, and ZnO thin films // J. Appl. Phys. // vol. 70, pp. 5538-5543, (1991).
https://doi.org/10.1063/1.350212
17. D. L. Pîlla, C. Ye and T. Tamagawa, Surfaced-micromachined PbTiO3, pyroelectric detectors // Appl. Phys. Lett. // vol. 59, pp. 3539-3541, (1991).
https://doi.org/10.1063/1.105650
18. R. Takayama, Y. Tomita, K. Lijima and I. Ueda, Pyroelectric properties and application to infrared sensors of PbLaTiO3, PbZrO3 and ferroelectric thin films // Ferroelectrics // vol. 118. pp. 325-342, (1991).
https://doi.org/10.1080/00150199108014770
19. E. Yamaka, H. Watanabe, H. ʳmurà, Í. Kanaya and H. Ohkuma, Structural, ferroelectric and ðyrîålåñtriñ properties of highly c-oriented Pb1-xCaxTiO3, thin film grown by radio-frequency magnetron sputtering // J. Vac. Sci. Tedmol // vol. A6. pp. 2921-2928, (1988).
https://doi.org/10.1116/1.575452
20. B.M. Kulvicki, A. Amin. H.R. Beratan and C.M. Hanson, Pyroeleclric imaging // Proc. 8th IEEE Int. Sómð. Aððl.Ferroelectrics // pp. 1-10, (1990).
21. M. Shorrocks, R.W. Whatmore and P.C. Îsbond, Lead scandium tantalate for thermal detector applications // Ferroelectrics // vol. 106, pp. 387-392, (1990).
https://doi.org/10.1080/00150199008214614
22. M. Shorrocks and R.W. Whalinore, Ferroelectric materials // Brit. UK Pat. Aððl. GB 2, 240, 335, July 31, (1991).
23. J. Lian. K. Okumura, M. Adachi. T. Shiosaki and A.Kawabata, Mixed sintering of PbZrO3, rich PZT based ceramic and their pyroelectric properties // Proc. 7th Int. Symp. Appl. Ferroelectrics, IEEE // pp. 383-386, (1990).
24. R. Watton, Ferroelectric materials and devices in infrared detection and imaging // Ferroelectrics // vol. 91, pp. 87-108,(1989).
https://doi.org/10.1080/00150198908015731
25. R. Watton and Ì.A. Todd, Ferroelectric ceramics for infrared detection // Brit. Ceram. Proc. // vol. 41, pp. 205-217,(1989).
26. K.K. Deb, Pyroelectric materials, U.S. patent 4.983.839, January 8, (1991).
27. K.K. Deb, Investigation pyroelectric characteristic of 8Pb(Zn1/3Nb2/3)O3- 0.1 PbTiO3- 0.1 BaTiO3, ceramics with special references to uncooled infrared detection // J. Electron. Mat. // vol. 2C pp. 653-658, (1991).
https://doi.org/10.1007/BF02654534
28. R. Watton and M.A. Todd, Induced pyroelectricity in sputtered lead scandium tantalate films and their Merit for IR detector arrays // Ferroelectrics // vol. 118, pp. 279-295, (1991).
https://doi.org/10.1080/00150199108014766
29. N.M. Shorrocks, S.U. Porter, K.W. Whatmore, A.D. Parsons, J. N Gooding and D.J. Pedder, Uncoolcd infrared thermal detector arrays // Proc. SPIE - Int. Soc. Opt. Eng. // vol. 1320 Infrared technology and applications, pp. 88-94,(1990).
https://doi.org/10.1117/12.22315
30. F.W. Ainger, C.J. Brierley. M.D. Hudson, C. Trundle and R. W Whalmore, Ferroelectrics thin films by metal organic chemical vapour deposition // Mat: Res. Soc. Symp. Proc. // vol. 200, pp. 37-47, (1990).
https://doi.org/10.1557/PROC-200-37
31. N.W. Schubring, J.V. Mantese, A.L. Micheli, À.Â. Catalan and R.J. Lopez, Charge pumping; and Pseudopyroelectric: effect in activ ferroelectrics Relaxor-Type films // Phys. Rev.Lett // vol. 68. pp. 1778-1781, (1992).
https://doi.org/10.1103/PhysRevLett.68.1778
32. M.E. Lines and A.M. Glass, Principles and applications, of ferroelectrics and related materials, Clarendon Press, Oxford, 1977, pp. 561-578.
33. H. Pulley, Thermal detectors, in tîð³ñs in applied physics, vol. 19: Optical and infrared detectors, R. J. Keycs, editor, Sprintier-Verlag. New York, pp. 71-100, 1980.
https://doi.org/10.1007/3540101764_11
34. J. M. Herbert, Ferroelectrics transducers and sensors // Gordon and breach science publishers inc. // pp. 266-290, 1982.
35. R. Watton, C. Smith and G.R. Jones, Pyroelectric materials: Operation and performance in the pyroelectric camera tube // Ferroelectrics // vol. 14, pp. 719-721, 1976.
https://doi.org/10.1080/00150197608236709
36. R. Watton, Ferroelectrics for infrared detection arid imagine // Proc. 6th Int. Symp, Appl. -Ferroelectrics, IEEE // pp.172-181, 1986.
https://doi.org/10.1109/ISAF.1986.201121
37. W. Whatmore, Pyroelectric devices and materials // Rep.Prog. Phys. // vol. 44, pp. 1335-1386, 1986.
https://doi.org/10.1088/0034-4885/49/12/002
38. Watton, Ferroelectrics materials and devices in infrared detection and imagine // Ferroelectrics // vol. 91, pp. 87-108,1989.
https://doi.org/10.1080/00150198908015731
39. L.A. Berardinis, Night vision, Mach. Des., October 24, 1991,pp. 57-61: J. M. Callahan. Sight at night, Automotive Ind.,October 1991, pp. 30 ff: J. Haystead, Thermal Imaging, Defense Elåñ³ã., April, pp.48-52, (1991).
40. S. Borrello, Focal planes for infrared imaging, Texas Inst.Tech. J., vol. 8, pp.20-27, (1991).
41. C. Hanson and H.Beratan, Uncooked pyroelectric imaging, Proc. 9th IEEE. Int. Symp. Appl. Ferroelectrics // pp. 656-661, (1990).
42. R.W. Hardin, First automobile with IR imaging hits the road in 2000 // OE Reports// ¹ 184, April 1999, pp. 1-4.