Semiconductor Physics, Quantum Electronics and Optoelectronics, 3 (4) P. 529-541 (2000).


References

1. A.Stephan, M.Bucking, H.Steinhart, Novel analytical tools for food flavours // Food Research International, 33(3-4),pp.199-209 (2000).
https://doi.org/10.1016/S0963-9969(00)00035-1
2. A.K.Pavlou, A.P.F.Turner, Sniffing out the Truth: Clinical Diagnosis Using the Electronic Nose // Clin. Chem. Lab. Med.38(2), pp.99-112 (2000).
https://doi.org/10.1515/CCLM.2000.016
3. K.Morit, H.Nagao, Y.F.Sasaki, Computation of molecular information in mammalian olfactory systems // Network:Comput. Neural Syst.9, pp.R79-R102 (1998).
https://doi.org/10.1088/0954-898X_9_4_002
4. U.Weimar, W.Goepel, Chemical Imaging: Trends in Multi-parameter Sensor Systems // Proceedings: The 11th European Conference on Solid State Transducers, Warsaw, pp.527-542 (1997).
5. B.M. Wise, N.L. Ricker, D.J. Veltkamp, B.R. Kowalski, A Theoretical Basis for the Use of Principal Component Models for Monitoring Multivariate Processes // Process Control & Data 1, pp. 41-47 (1990).
6. H.L.C.Meuzelaar, J.P.Dworzanski, N.S.Arnold, W.H. Mc-Clennen, D.J.Wager, Advances in field-portable mobile GC/MS instrumentation // Field Analytical Chemistry & Technology, 4(1), pp.3-13 (2000).
https://doi.org/10.1002/(SICI)1520-6521(2000)4:1<3::AID-FACT2>3.0.CO;2-M
7. C.L.Honeybourne, Organic Vapor Sensors for Food Quality Assessment // Journal of Chemical Education 77(3), pp.338-344 (2000).
https://doi.org/10.1021/ed077p338
8. J.W.Gardner, Microsensors: Principles and Applications, J.Wiley&Sons Ltd., London (1994).
9. H.Ulmer, J.Mitrovics, U.Weimar, W.Goepel, Sensor arrays with only one or several transducer principles? The advantage of hybrid modular systems // Sensors and Actuators B 65, pp.79-81 (2000).
https://doi.org/10.1016/S0925-4005(99)00330-5
10. G.Horner, Fragrances and aroma analysis using Electronic nose // SOFW-Journal 9, pp.1-4 (1998).
11. A.Galdikas, A.Mironas, D.Senuliene, A.Setkus, Specific set of the time constants for characterisation of organic volatile compounds in the output of metal oxide sensors // Sensors and Actuators B 68, pp.335-343 (2000).
https://doi.org/10.1016/S0925-4005(00)00454-8
12. R.J.Elliott-Martin, P.N.Bartlett, J.W.Gardner, T.T.Mottram, An overview of electronic noses and their applications, in Sensors and their Applications VII(ed. A.T. Augousti), IOP Publishing, Bristol, pp.12-20 (1995).
13. V.K. Varadan, J.W. Gardner, Smart tongues and smart noses,in Smart Structures and MEMS (ed. V.K. Varadan) // Proceedings of SPIE Vol. 3673, pp.67-76 (1999).
14. G.H.Dodd, P.N.Bartlett, J.W.Gardner, Odours, the stimulus for an electronic nose, in Sensors & Sensory Systems for an Electronic Nose (eds. J.W.Gardner and P.N.Bartlett) // NATO ASI Series E: Applied Science Vol. 212(Ch. 1), pp. 1-12 (1992).
https://doi.org/10.1007/978-94-015-7985-8_1
15. B.J.Doleman, E.J.Severin, N.S.Lewis, Trends in odor intensity for human and electronic noses: Relative roles of odorant vapor pressure vs. molecularly specific odorant binding // Proc. Natl. Acad. Sci. USA 95, pp. 5442-5447 (1998).
https://doi.org/10.1073/pnas.95.10.5442
16. F.L.Dickert, H.Stathopulos, M.Reif, Mass-Sensitive Detection of Solvent Vapours: Predicting Sensor Effects // Adv.Mater.8 (6), pp.525-529 (1996).
https://doi.org/10.1002/adma.19960080617
17. J.Rickert, A.Brecht, W.Goepel, QCM Operation in Liquids: Constant Sensitivity during Formation of Extended Protein Multilayers by Affinity // Anal. Chem. 69, pp. 1441-1448 (1997).
https://doi.org/10.1021/ac960875p
18. Y.-M.Yang, P.-Y.Yang, X.-R.Wang, Electronic nose based on SAWS array and its odour identification capability // Sensors and Actuators B 66, pp.167-170 (2000).
https://doi.org/10.1016/S0925-4005(00)00311-7
19. B.Jakoby, M.J.Vellekoop, Viscosity sensing using a Love-wave device // Sensors and Actuators A 68, pp. 275-281(1998).
https://doi.org/10.1016/S0924-4247(98)00017-X
20. M.Haug, K.D.Schierbaum, G.Gauglitz, W.Goepel, Chemical sensors based upon polysiloxanes: comparison between optical, quartz microbalance, calorimetric, and capacitance sensors // Sensors and Actuators B 11, pp.383-391 (1993).
https://doi.org/10.1016/0925-4005(93)85278-I
21. C.K.O'Sullivan, G.G.Guilbault, Commercial quartz crystal microbalances - theory and applications // Biosensors & Bioelectronics 14, pp.663-670 (1999).
https://doi.org/10.1016/S0956-5663(99)00040-8
22. J.Reinbold, K.Buhlmann, K.Cammann, A.Wierig, C.Wimmer, E.Weber, Inclusion of organic vapours by crystalline hosts. Chemical-sensitive coatings for sensor applica-tions. // Sensors and Actuators B 18-19, pp.77-81 (1994).
https://doi.org/10.1016/0925-4005(94)87060-8
23. C.Fredriksson, S.Kihiman, M.Rodahl, B.Kasemo, The Pi-ezoelectric Quartz Crystal Mass and Dissipation Sensor: A Means of Studying Cell Adhesion // Langmuir 14, pp.248-251 (1998).
https://doi.org/10.1021/la971005l
24. F.Hook, M.Rodah, V.P.Brzezinski, B.Kasemo, Energy Dissipation Kinetics for Protein and Antibody-Antigen Ad-sorption under Shear Oscillation on a Quartz Crystal Microbalance // Langmuir 14, pp.729-734 (1998).
https://doi.org/10.1021/la970815u
25. J.W.Gardner, P.N.Bartlett, Electronic noses: principles and application, Oxford University Press, Oxford (1999).
26. A.J. Ricco, R.M.Crooks, G.C.Osbourn, Sensor Arrays: New Chemically Sensitive Interfaces Combined with Novel Cluster Analysis To Detect Volatile Organic Compounds and Mixtures // Acc.Chem.Res 31(5), pp.289-295 (1998).
https://doi.org/10.1021/ar9600749
27. T.C.Pearce, J.W.Gardner, Predicting organoleptic scores of sub-ppm flavour notes. Part1-Part2. // The Analyst 123, pp.2047-2063 (1998).
https://doi.org/10.1039/a804018d
28. W.P.Carey, K.R.Beebe, B.R.Kowalski, Multicomponent Analysis Using an Array of Piezoelectric Crystal Sensors // Anal. Chem. 59, pp.1529-1532 (1987).
https://doi.org/10.1021/ac00138a010
29. W.P.Carey, K.R.Beebe, B.R.Kowalski, Selection of Adsorbates for Chemical Sensor Arrays by Pattern Recognition // Anal. Chem.58, pp.149-153 (1987).
https://doi.org/10.1021/ac00292a036
30. J.E.Amoore, Stereochemical theory of Olfaction. // Nature 198, pp.271-272 (1964).
https://doi.org/10.1038/198271a0
31. T.C.Pearce, Computational parallels between the biological olfactory pathway and its analogue 'The Electronic Nose': Part I. Biological olfaction. // BioSystems 41, pp.43-67 (1997).
https://doi.org/10.1016/S0303-2647(96)01661-9
32. T.Ekloev, P.Martensson, I.Lundstroem, Selection of variables for interpreting multivariate gas sensor data // Analytica Chimica Acta 381, pp. 221-232 (1999).
https://doi.org/10.1016/S0003-2670(98)00739-9
33. M.Frank, T.Hemile, H.Ulmer, J.Mitrovics, U.Weimar, W.Goepel, Quality tests of electronic noses: the influence of sample dilution and sensor drifts on the pattern recognition for selected case studies // Sensors and Actuators B 65, pp.88-90 (2000).
https://doi.org/10.1016/S0925-4005(99)00312-3
34. A.Ulmar, Organic thin films and surfaces: directions for the nineties, Thin Films, Volume 20, Academic Press, London(1995).
35. T.Weiss, K.D.Schierbaum, U.Thoden van Velzen, D.N.Reinhoudt, W.Goepel, Self-assembled monolayers of supramolecular compounds for chemical sensors // Sensors and Actuators B 26-27, pp.203-207 (1995).
https://doi.org/10.1016/0925-4005(94)01587-8
36. M.A.Rodrigues, D.F.S.Petri, M.J.Politi, S.Brochsztain, Novel self-assembled films of zirconium phosphonate 1,4,5,8-naphtalenediimides // Thin Solid Films 371, pp.109-113 (2000).
https://doi.org/10.1016/S0040-6090(00)00990-1
37. L.I.Maissel, R.Glang, Handbook of Thin Film Technology, McGraw Hill Hook Company, New York (1970).
https://doi.org/10.1149/1.2408101
38. E.A.Silinsh, M.V.Kurik, V.Chapek, Electronic processes in organic molecular crystals: Ljcalization and polirization phenomena, Zinatne Publishers, Riga (1988).
39. A.Rauk, Orbital interaction theory of organic chemistry, John Wiley&Sons., Inc., Brisbane (1994).
40. F.London, Properties and application of molecular forces. // Ztschr.Phys.Chem 11, pp.222-251 (1930).
41. V.A.Andreev, M.V.Kurik, S.Nespurek, E.A.Silinsh, V.J.Sugakov, L.F.Taure, E.L.Frankevich, V.Chapek, Electronic processes in organic molecular crystals: Transport, trapping, spin effects, Zinatne Publishers, Riga (1992).
42. A.I.Kitajigorodskji, Molecular crystals, Nauka, Moskaw(1971).
43. F.L.Dickert, O.Schuster, Supramolecular Detection of Solvent Vapours with Calixarenes: Mass-Sensitive Sensors, Molecular Mechanics and BET Studies // Mikrochim.Acta 119, pp.55-62 (1995).
https://doi.org/10.1007/BF01244854
44. A.Dominik, H.J.Roth, K.D.Schierbaum, W.Goepel, Supramolecular complexex based on calixarenes: force field calculations and applications for chemical sensors // Supramolecular Science 1(1), pp.11-19 (1994).
https://doi.org/10.1016/0968-5677(94)90005-1
45. O.Omar, A.K.Ray, A.K.Hassan, F.Davis, Resorcinol calixarenes (resorcarenes): Langmuir-Blodgett films and optical properties // Supramolecular Science 4(3-4), pp.417-421(1997).
https://doi.org/10.1016/S0968-5677(97)00024-2
46. G.Alberti, T.Bein, Comprehensive Supramolecular Chemistry, Elsevier Science Ltd. (1996)
47. A.S. Davidov, Biology and quantum mechanics, Naukova dumka, Kiev (1979).
48. N.Kosai, I.Sugimoto, V.Nakamura, T.Katoh, Odorant detection capability of QCR sensors coated with plasma deposited organic films // Biosensors and Bioelectronics 14, pp.533-539 (1999).
https://doi.org/10.1016/S0956-5663(99)00031-7
49. E.G.Petrov, Physics of charge transfer in biosystems, Naukova dumka, Kiev (1984).
50. R.S. Mulliken, W.B. Person, Molecular complexes, J.Wiley,London (1969).
51. H.K.Hong, H.W.Shin, D.H.Yun, S.R.Kim, C,H,Kwon, K.Lee, T.Moriizumi, Electronic nose system with micro gas sensor array // Sensors and Actuators B 36(1-3), pp.338-341 (1996).
https://doi.org/10.1016/S0925-4005(97)80092-5
52. P. Michaijlov, Medicine cosmetology, Medicine, Moscow(1982).
53. V.A. Novozhilov, Odours world, Znanie, Moscow (1988).
54. R.M.Crooks, A.J.Ricco, New Organic Materials Suitable for Use in Chemical Sensor Arrays // Acc. Chem. Res.31, pp.219-227 (1998).
https://doi.org/10.1021/ar970246h
55. M.Pope, C.E.Swenberg, Electronic processes in organic crystals, Oxford University Press, Oxford (1982).
56. Ya.I.Freimanis, A.A.Urgis // Theoret. and Experim. Chem.6,pp.678-682 (1970).
57. Ya.I.Vertsimacha, A.V.Kovalchuk, K.A.Balodis, R.C.Medne, O.Ya.Neiland, L.N.Tarachan, Optical and photoelectrical Properties of 5,6,11,12-tetrachlorotetracene // Latvijas PSR Zintnu Akademijas Vestis, Fizikas un technisko zinatnu serija 6, pp.51-55 (1983).
58. L.Cui, M.J.Swann, A.Glidle, J.R.Barker, J.M.Cooper, Odour mapping using microresistor and piezo-electric sensor poirs // Sensors and Actuators B 66, pp.94-97 (2000).
https://doi.org/10.1016/S0925-4005(99)00322-6
59. Y.Dong, G.Feng, Investigation of acoustic load sensitivity of quartz crystal resonator and related sensors // Sensors and Actuators B 66, pp.187-189 (2000).
https://doi.org/10.1016/S0925-4005(00)00348-8
60. R.Lucklum, P.Hauptmann, The quartz crystal microbalance: mass sensitivity, viscoelasticity and acoustic amplification // Sensors and Actuators B 70, pp.30-36 (2000).
https://doi.org/10.1016/S0925-4005(00)00550-5
61. C.Behling, R.Lucklum, P.Hauptmann, Response of quartz-crystal resonators to gas and liquid analyte exposure // Sensors and Actuators A 68, pp.388-398 (1998).
https://doi.org/10.1016/S0924-4247(98)00088-0
62. G.Sauerbrey, Verwendung von Schwingquarzen zur Waegung duenner Schichten und zur Mikrowaegung // Zeitschrift fuer Physik 155, pp. 206-222 (1959).
https://doi.org/10.1007/BF01337937
63. V.G.Androsova, E.G.Bronnikova, A.M.Vasiliev and all., Piezoelectric crystals, Radio i sviaz, Moscow (1992).
64. H.Nanto, N.Dougami, T.Mukai, M.Habara, E.Kusano, A.Kinbara, T.Ogawa, T.Oyabu, A smart gas sensor using polymer-film-coated quartz resonator microbalance // Sensors and Actuators B 66,pp.16-18 (2000).
https://doi.org/10.1016/S0925-4005(99)00450-5
65. J.W.Grade, M.Klusty, R.A.McGill, M.H.Abraham, G.Whiting, J.Andonian-Haftvan, The predomint role of swelling-induced modulus changes of the sorbent phase in determing the responses of polymer-coated surface acoustic wave vapor sensors // Anal.Chem. 64(6), pp.610-624 (1992).
https://doi.org/10.1021/ac00030a009
66. F.F.Volkenstein, Electronic processes at the surface of semiconductors under chemosorption, Nauka, Moscow (1987).
67. Y.M. Shirshov, B.A.Snopok, E.P.Matsas, V.I.Kal'chenko, V.V.Zhurach, A.V.Prochorovich, Y.V.Subota, I.V.Gavrilyuk, O.N.Kopylov, R.Merker, QCM-based Artificial Nose: Influence of Initial Training and Warming-up on the Responce of Thin Evaporated Calixarene Films // Proceedings of the 6th International Symposium «Olfaction&Electronic Nose», Tuebingen. pp.130-133 (1999).
68. J.W.Gardner, T.C.Pearce, S.Friel, P.N.Bartlett, N.L.Blair, A multisensor system for beer flavour monitoring using an array of conducting polymers and predictive classifiers // Sensors and Actuators B 18-19, pp.240-243 (1994).
https://doi.org/10.1016/0925-4005(94)87089-6
69. C.Di Natale, R.Paolesse, A.Macagnano, V.I.Troitsky, T.S.Berzina, A.D'Amico, Pattern recognition approach to the study of the interactions between metalloporphyrin Langmuir-Blodgett films and volatile organic compounds // Analitica Chimica Acta 384, pp.249-259 (1999).
https://doi.org/10.1016/S0003-2670(98)00783-1
70. J.W.Gardner, E.L.Hines, Pattern analysis techniques, in Handbook of Biosensors: Medicine, Food & the Environment, (ed. E. Kress-Rogers), Ch. 27 pp.633-652 (1996).
71. D.M.Wilson, K.Dunman, T.Roppel, R.Kalim, Rank extraction in tin-oxide sensor arrays // Sensors and Actuators B 62(3), pp.199-210 (2000).
https://doi.org/10.1016/S0925-4005(99)00386-X
72. V.A.Kolemaev, O.V.Staroverov, V.B.Turundaevskji, Probability theory and mathematical statistics, Vysshaji Shkola, Moscow (1991).
73. E.Schaller, J.0.Bosset, F.Escher, Practical Experience with «Electronic Nose» Systems for Monitorinc the Quality of Dairy Products // Chimia 53, pp. 98-102 (1999).
74. M.A.Sharaf, D.L.Illman, B.R.Kowalski, Chemometrics, John Wiley and Sons, Toronto (1987).
75. B.R.Kowalski, C.F. Bender // J.Pattern Recog. 8, pp.1-12(1976).
https://doi.org/10.1016/0031-3203(76)90023-6
76. T.C.Pearce, Computational parallels between the biological olfactory pathway and its analogue «The Electronic Nose»: Part II. Sensor-based machine olfaction // BioSystems 41, pp.69-90 (1997).
https://doi.org/10.1016/S0303-2647(96)01660-7
77. W.Goepel, From electronic to bioelectronic olfaction, or : from artificial «moses» to real noses // Sensors and Actuators B 65, pp. 70-72 (2000).
https://doi.org/10.1016/S0925-4005(99)00308-1