Semiconductor Physics, Quantum Electronics and Optoelectronics, 3 (4) P. 529-541 (2000).
References
1. A.Stephan, M.Bucking, H.Steinhart, Novel analytical tools for food flavours // Food Research International, 33(3-4),pp.199-209 (2000). https://doi.org/10.1016/S0963-9969(00)00035-1
2. A.K.Pavlou, A.P.F.Turner, Sniffing out the Truth: Clinical Diagnosis Using the Electronic Nose // Clin. Chem. Lab. Med.38(2), pp.99-112 (2000). https://doi.org/10.1515/CCLM.2000.016
3. K.Morit, H.Nagao, Y.F.Sasaki, Computation of molecular information in mammalian olfactory systems // Network:Comput. Neural Syst.9, pp.R79-R102 (1998). https://doi.org/10.1088/0954-898X_9_4_002
4. U.Weimar, W.Goepel, Chemical Imaging: Trends in Multi-parameter Sensor Systems // Proceedings: The 11th European Conference on Solid State Transducers, Warsaw, pp.527-542 (1997).
5. B.M. Wise, N.L. Ricker, D.J. Veltkamp, B.R. Kowalski, A Theoretical Basis for the Use of Principal Component Models for Monitoring Multivariate Processes // Process Control & Data 1, pp. 41-47 (1990).
7. C.L.Honeybourne, Organic Vapor Sensors for Food Quality Assessment // Journal of Chemical Education 77(3), pp.338-344 (2000). https://doi.org/10.1021/ed077p338
8. J.W.Gardner, Microsensors: Principles and Applications, J.Wiley&Sons Ltd., London (1994).
9. H.Ulmer, J.Mitrovics, U.Weimar, W.Goepel, Sensor arrays with only one or several transducer principles? The advantage of hybrid modular systems // Sensors and Actuators B 65, pp.79-81 (2000). https://doi.org/10.1016/S0925-4005(99)00330-5
10. G.Horner, Fragrances and aroma analysis using Electronic nose // SOFW-Journal 9, pp.1-4 (1998).
11. A.Galdikas, A.Mironas, D.Senuliene, A.Setkus, Specific set of the time constants for characterisation of organic volatile compounds in the output of metal oxide sensors // Sensors and Actuators B 68, pp.335-343 (2000). https://doi.org/10.1016/S0925-4005(00)00454-8
12. R.J.Elliott-Martin, P.N.Bartlett, J.W.Gardner, T.T.Mottram, An overview of electronic noses and their applications, in Sensors and their Applications VII(ed. A.T. Augousti), IOP Publishing, Bristol, pp.12-20 (1995).
13. V.K. Varadan, J.W. Gardner, Smart tongues and smart noses,in Smart Structures and MEMS (ed. V.K. Varadan) // Proceedings of SPIE Vol. 3673, pp.67-76 (1999).
14. G.H.Dodd, P.N.Bartlett, J.W.Gardner, Odours, the stimulus for an electronic nose, in Sensors & Sensory Systems for an Electronic Nose (eds. J.W.Gardner and P.N.Bartlett) // NATO ASI Series E: Applied Science Vol. 212(Ch. 1), pp. 1-12 (1992). https://doi.org/10.1007/978-94-015-7985-8_1
15. B.J.Doleman, E.J.Severin, N.S.Lewis, Trends in odor intensity for human and electronic noses: Relative roles of odorant vapor pressure vs. molecularly specific odorant binding // Proc. Natl. Acad. Sci. USA 95, pp. 5442-5447 (1998). https://doi.org/10.1073/pnas.95.10.5442
17. J.Rickert, A.Brecht, W.Goepel, QCM Operation in Liquids: Constant Sensitivity during Formation of Extended Protein Multilayers by Affinity // Anal. Chem. 69, pp. 1441-1448 (1997). https://doi.org/10.1021/ac960875p
18. Y.-M.Yang, P.-Y.Yang, X.-R.Wang, Electronic nose based on SAWS array and its odour identification capability // Sensors and Actuators B 66, pp.167-170 (2000). https://doi.org/10.1016/S0925-4005(00)00311-7
20. M.Haug, K.D.Schierbaum, G.Gauglitz, W.Goepel, Chemical sensors based upon polysiloxanes: comparison between optical, quartz microbalance, calorimetric, and capacitance sensors // Sensors and Actuators B 11, pp.383-391 (1993). https://doi.org/10.1016/0925-4005(93)85278-I
21. C.K.O'Sullivan, G.G.Guilbault, Commercial quartz crystal microbalances - theory and applications // Biosensors & Bioelectronics 14, pp.663-670 (1999). https://doi.org/10.1016/S0956-5663(99)00040-8
22. J.Reinbold, K.Buhlmann, K.Cammann, A.Wierig, C.Wimmer, E.Weber, Inclusion of organic vapours by crystalline hosts. Chemical-sensitive coatings for sensor applica-tions. // Sensors and Actuators B 18-19, pp.77-81 (1994). https://doi.org/10.1016/0925-4005(94)87060-8
23. C.Fredriksson, S.Kihiman, M.Rodahl, B.Kasemo, The Pi-ezoelectric Quartz Crystal Mass and Dissipation Sensor: A Means of Studying Cell Adhesion // Langmuir 14, pp.248-251 (1998). https://doi.org/10.1021/la971005l
24. F.Hook, M.Rodah, V.P.Brzezinski, B.Kasemo, Energy Dissipation Kinetics for Protein and Antibody-Antigen Ad-sorption under Shear Oscillation on a Quartz Crystal Microbalance // Langmuir 14, pp.729-734 (1998). https://doi.org/10.1021/la970815u
25. J.W.Gardner, P.N.Bartlett, Electronic noses: principles and application, Oxford University Press, Oxford (1999).
26. A.J. Ricco, R.M.Crooks, G.C.Osbourn, Sensor Arrays: New Chemically Sensitive Interfaces Combined with Novel Cluster Analysis To Detect Volatile Organic Compounds and Mixtures // Acc.Chem.Res 31(5), pp.289-295 (1998). https://doi.org/10.1021/ar9600749
27. T.C.Pearce, J.W.Gardner, Predicting organoleptic scores of sub-ppm flavour notes. Part1-Part2. // The Analyst 123, pp.2047-2063 (1998). https://doi.org/10.1039/a804018d
28. W.P.Carey, K.R.Beebe, B.R.Kowalski, Multicomponent Analysis Using an Array of Piezoelectric Crystal Sensors // Anal. Chem. 59, pp.1529-1532 (1987). https://doi.org/10.1021/ac00138a010
29. W.P.Carey, K.R.Beebe, B.R.Kowalski, Selection of Adsorbates for Chemical Sensor Arrays by Pattern Recognition // Anal. Chem.58, pp.149-153 (1987). https://doi.org/10.1021/ac00292a036
31. T.C.Pearce, Computational parallels between the biological olfactory pathway and its analogue 'The Electronic Nose': Part I. Biological olfaction. // BioSystems 41, pp.43-67 (1997). https://doi.org/10.1016/S0303-2647(96)01661-9
32. T.Ekloev, P.Martensson, I.Lundstroem, Selection of variables for interpreting multivariate gas sensor data // Analytica Chimica Acta 381, pp. 221-232 (1999). https://doi.org/10.1016/S0003-2670(98)00739-9
33. M.Frank, T.Hemile, H.Ulmer, J.Mitrovics, U.Weimar, W.Goepel, Quality tests of electronic noses: the influence of sample dilution and sensor drifts on the pattern recognition for selected case studies // Sensors and Actuators B 65, pp.88-90 (2000). https://doi.org/10.1016/S0925-4005(99)00312-3
34. A.Ulmar, Organic thin films and surfaces: directions for the nineties, Thin Films, Volume 20, Academic Press, London(1995).
35. T.Weiss, K.D.Schierbaum, U.Thoden van Velzen, D.N.Reinhoudt, W.Goepel, Self-assembled monolayers of supramolecular compounds for chemical sensors // Sensors and Actuators B 26-27, pp.203-207 (1995). https://doi.org/10.1016/0925-4005(94)01587-8
36. M.A.Rodrigues, D.F.S.Petri, M.J.Politi, S.Brochsztain, Novel self-assembled films of zirconium phosphonate 1,4,5,8-naphtalenediimides // Thin Solid Films 371, pp.109-113 (2000). https://doi.org/10.1016/S0040-6090(00)00990-1
37. L.I.Maissel, R.Glang, Handbook of Thin Film Technology, McGraw Hill Hook Company, New York (1970). https://doi.org/10.1149/1.2408101
38. E.A.Silinsh, M.V.Kurik, V.Chapek, Electronic processes in organic molecular crystals: Ljcalization and polirization phenomena, Zinatne Publishers, Riga (1988).
39. A.Rauk, Orbital interaction theory of organic chemistry, John Wiley&Sons., Inc., Brisbane (1994).
40. F.London, Properties and application of molecular forces. // Ztschr.Phys.Chem 11, pp.222-251 (1930).
43. F.L.Dickert, O.Schuster, Supramolecular Detection of Solvent Vapours with Calixarenes: Mass-Sensitive Sensors, Molecular Mechanics and BET Studies // Mikrochim.Acta 119, pp.55-62 (1995). https://doi.org/10.1007/BF01244854
44. A.Dominik, H.J.Roth, K.D.Schierbaum, W.Goepel, Supramolecular complexex based on calixarenes: force field calculations and applications for chemical sensors // Supramolecular Science 1(1), pp.11-19 (1994). https://doi.org/10.1016/0968-5677(94)90005-1
45. O.Omar, A.K.Ray, A.K.Hassan, F.Davis, Resorcinol calixarenes (resorcarenes): Langmuir-Blodgett films and optical properties // Supramolecular Science 4(3-4), pp.417-421(1997). https://doi.org/10.1016/S0968-5677(97)00024-2
51. H.K.Hong, H.W.Shin, D.H.Yun, S.R.Kim, C,H,Kwon, K.Lee, T.Moriizumi, Electronic nose system with micro gas sensor array // Sensors and Actuators B 36(1-3), pp.338-341 (1996). https://doi.org/10.1016/S0925-4005(97)80092-5
52. P. Michaijlov, Medicine cosmetology, Medicine, Moscow(1982).
54. R.M.Crooks, A.J.Ricco, New Organic Materials Suitable for Use in Chemical Sensor Arrays // Acc. Chem. Res.31, pp.219-227 (1998). https://doi.org/10.1021/ar970246h
55. M.Pope, C.E.Swenberg, Electronic processes in organic crystals, Oxford University Press, Oxford (1982).
56. Ya.I.Freimanis, A.A.Urgis // Theoret. and Experim. Chem.6,pp.678-682 (1970).
57. Ya.I.Vertsimacha, A.V.Kovalchuk, K.A.Balodis, R.C.Medne, O.Ya.Neiland, L.N.Tarachan, Optical and photoelectrical Properties of 5,6,11,12-tetrachlorotetracene // Latvijas PSR Zintnu Akademijas Vestis, Fizikas un technisko zinatnu serija 6, pp.51-55 (1983).
58. L.Cui, M.J.Swann, A.Glidle, J.R.Barker, J.M.Cooper, Odour mapping using microresistor and piezo-electric sensor poirs // Sensors and Actuators B 66, pp.94-97 (2000). https://doi.org/10.1016/S0925-4005(99)00322-6
59. Y.Dong, G.Feng, Investigation of acoustic load sensitivity of quartz crystal resonator and related sensors // Sensors and Actuators B 66, pp.187-189 (2000). https://doi.org/10.1016/S0925-4005(00)00348-8
60. R.Lucklum, P.Hauptmann, The quartz crystal microbalance: mass sensitivity, viscoelasticity and acoustic amplification // Sensors and Actuators B 70, pp.30-36 (2000). https://doi.org/10.1016/S0925-4005(00)00550-5
61. C.Behling, R.Lucklum, P.Hauptmann, Response of quartz-crystal resonators to gas and liquid analyte exposure // Sensors and Actuators A 68, pp.388-398 (1998). https://doi.org/10.1016/S0924-4247(98)00088-0
62. G.Sauerbrey, Verwendung von Schwingquarzen zur Waegung duenner Schichten und zur Mikrowaegung // Zeitschrift fuer Physik 155, pp. 206-222 (1959). https://doi.org/10.1007/BF01337937
63. V.G.Androsova, E.G.Bronnikova, A.M.Vasiliev and all., Piezoelectric crystals, Radio i sviaz, Moscow (1992).
64. H.Nanto, N.Dougami, T.Mukai, M.Habara, E.Kusano, A.Kinbara, T.Ogawa, T.Oyabu, A smart gas sensor using polymer-film-coated quartz resonator microbalance // Sensors and Actuators B 66,pp.16-18 (2000). https://doi.org/10.1016/S0925-4005(99)00450-5
65. J.W.Grade, M.Klusty, R.A.McGill, M.H.Abraham, G.Whiting, J.Andonian-Haftvan, The predomint role of swelling-induced modulus changes of the sorbent phase in determing the responses of polymer-coated surface acoustic wave vapor sensors // Anal.Chem. 64(6), pp.610-624 (1992). https://doi.org/10.1021/ac00030a009
66. F.F.Volkenstein, Electronic processes at the surface of semiconductors under chemosorption, Nauka, Moscow (1987).
67. Y.M. Shirshov, B.A.Snopok, E.P.Matsas, V.I.Kal'chenko, V.V.Zhurach, A.V.Prochorovich, Y.V.Subota, I.V.Gavrilyuk, O.N.Kopylov, R.Merker, QCM-based Artificial Nose: Influence of Initial Training and Warming-up on the Responce of Thin Evaporated Calixarene Films // Proceedings of the 6th International Symposium «Olfaction&Electronic Nose», Tuebingen. pp.130-133 (1999).
68. J.W.Gardner, T.C.Pearce, S.Friel, P.N.Bartlett, N.L.Blair, A multisensor system for beer flavour monitoring using an array of conducting polymers and predictive classifiers // Sensors and Actuators B 18-19, pp.240-243 (1994). https://doi.org/10.1016/0925-4005(94)87089-6
69. C.Di Natale, R.Paolesse, A.Macagnano, V.I.Troitsky, T.S.Berzina, A.D'Amico, Pattern recognition approach to the study of the interactions between metalloporphyrin Langmuir-Blodgett films and volatile organic compounds // Analitica Chimica Acta 384, pp.249-259 (1999). https://doi.org/10.1016/S0003-2670(98)00783-1
70. J.W.Gardner, E.L.Hines, Pattern analysis techniques, in Handbook of Biosensors: Medicine, Food & the Environment, (ed. E. Kress-Rogers), Ch. 27 pp.633-652 (1996).
71. D.M.Wilson, K.Dunman, T.Roppel, R.Kalim, Rank extraction in tin-oxide sensor arrays // Sensors and Actuators B 62(3), pp.199-210 (2000). https://doi.org/10.1016/S0925-4005(99)00386-X
72. V.A.Kolemaev, O.V.Staroverov, V.B.Turundaevskji, Probability theory and mathematical statistics, Vysshaji Shkola, Moscow (1991).
73. E.Schaller, J.0.Bosset, F.Escher, Practical Experience with «Electronic Nose» Systems for Monitorinc the Quality of Dairy Products // Chimia 53, pp. 98-102 (1999).
74. M.A.Sharaf, D.L.Illman, B.R.Kowalski, Chemometrics, John Wiley and Sons, Toronto (1987).
76. T.C.Pearce, Computational parallels between the biological olfactory pathway and its analogue «The Electronic Nose»: Part II. Sensor-based machine olfaction // BioSystems 41, pp.69-90 (1997). https://doi.org/10.1016/S0303-2647(96)01660-7
77. W.Goepel, From electronic to bioelectronic olfaction, or : from artificial «moses» to real noses // Sensors and Actuators B 65, pp. 70-72 (2000). https://doi.org/10.1016/S0925-4005(99)00308-1