Semiconductor Physics, Quantum Electronics and Optoelectronics, 8 (4) P. 038-054 (2005).


References

1. I. Tamm, Uber eine mogliche Art der Elektronen-bindung an Krista lloberflachen // Phys. Z. Sowjetunion1, p.733-736 (1932).
2. W.Shockley, On the surface states associated with a periodic potential // Phys. Rev. 56, p. 317-320 (1939).
https://doi.org/10.1103/PhysRev.56.317
3. W. Shockley, G.L.Pearson, Modulation of conductance of thin films of semiconductors by surface charge // Phys. Rev. 74, p. 232-236 (1948).
https://doi.org/10.1103/PhysRev.74.232
4. A. Many, Y. Goldstein, N.B. Grover, Semiconductor surfaces. John Willey and Sons, N.Y. (1965).
5. V.I. Lyashenko, V.G. Litovchenko, I.I. Stepko, Electron properties on semiconductor surface. Naukova dumka, Kiev (1968) (in Russian).
6. A.V. Rzhanov, Electron processeson semiconductor surface. Nauka, Moscow (1971) (in Russian).
7. M.M. Attalla, E. Tannenbaum, E.E. Schebner, Stabilization of silicon surfaces by thermally grown oxides // Bell Syst. Techn. J. 30(5), p. 749-765 (1959).
https://doi.org/10.1002/j.1538-7305.1959.tb03907.x
8. Kahng D., Attalla M.M. Si-SiO2field induced surface device // IRE Solid State. Dev.Res. Conf., Pittsburg, 1960.
9. V.G. Litovchenko, A.P. Gorban'. Physics of microelectronic systems metal-dielectric-semiconductor. Naukova dumka, Kiev (1978) (in Russian).
10. Properties of the structures metal-dielectric-semiconductor. Ed. by A.V. Rzhanov. Nauka, Moscow (1976) (in Russian).
11. V.S. Vavilov, V.F. Kiselyov, B.N. Mukashev. Defects in silicon and on its surface. Nauka, Moscow (1990) (in Russian).
12. A.P. Baraban, V.V. Bulavinov, P.P. Konorov. Electron properties of SiO2 layers on silicon. Published in Leningrad State University, Leningrad (1988) (in Russian).
13. The physics and chemistry of SiO2 and the Si-SiO2 interface. // Proc. 3 Intern. Symposium. NJ, Pennington (1996).
14. M.L. Green, E.P. Gusev, R. Degraeve, E.L. Garfunkеl, Ultrathin SiO2 and Si-O-N dielectric layers for silicon microelectronics // Appl. Phys. Rev. 90(5), p. 2057-2121 (2001).
https://doi.org/10.1063/1.1385803
15. P.V. Gray, D.M.Brawn, Density of Si-SiO2 interface states // Appl. Phys. Lett. 8(2), p. 31-33 (1966).
https://doi.org/10.1063/1.1754468
16. N.M. Johnson, Energy-resolved DLTS measurments of interface states in MIS structures // Appl. Phys. Lett. 34(11), p. 802-804 (1979).
https://doi.org/10.1063/1.90650
17. S.I. Kirillova, V.Ye. Primachenko, O.V. Snitko, V.A. Chernobai, Electron properties of the silicon surface in its various physico-chemical states // Poverkhnost' No 11, p.74-79 (1991) (in Russian).
18. S.I. Kirillova, M.D. Moin, V.Ye. Primachenko, S.V. Svechnikov, V.A. Chernobai, I.N. Dubrov, Changes of electron properties of the Si-SiO2 system after laser irradiation // Fizika i tekhnika poluprovodnikov 26(8), p. 1399-1404 (1992) (in Russian).
19. Ye.F. Venger, S.I. Kirillova, V.Ye. Primachenko, V.A. Chernobai, The system of surface electron states inherent to thermally oxidized and real silicon surfaces // Ukrainskiy fizicheskiy zhurnal 42(11/12), p. 1333-1339 (1997) (in Russian).
20. S.I. Kirillova, V.Ye. Primachenko, A.A. Serba, V.A. Chernobai, The system of discrete electron states at the interface Si(100)-SiO2 // Mikroelektronika 29(5), p. 390-394 (2000) (in Russian).
https://doi.org/10.1007/BF02773286
21. S.I.Kirillova, V.E.Primachenko, E.F Venger, V.A.Chernobai, Electron properties of silicon surface at different oxide film conditions // Semiconductor Physics, Quantum Electronics and Optoelectronics4 (1), p.12-22 (2001).
22. E.H. Poindexter, MOS interface states : overview and physicochemical perspectives // Semicond. Sci. Technol. 4(12), p. 961-969 (1989).
https://doi.org/10.1088/0268-1242/4/12/001
23. G.I. Pietsch, Ubiquitous surfaces termination of the wet-chemical processing // Appl. Phys. A60(4), p. 347-363 (1995).
https://doi.org/10.1007/BF01538334
24. G.F. Cerofolini, L. Meda, Chemistry at silicon crystalline surfaces // Appl. Surf. Science 89(4), p. 351-360 (1995).
https://doi.org/10.1016/0169-4332(95)00050-X
25. V.Ye. Primachenko, O.V. Snitko, Physics of the semiconductor surface doped with metals. Naukova dumka, Kiev (1988) (in Russian).
26. V.I. Beklemishev, B.G. Gribov, V.V. Levenets, I.I. Manokhin, Passivation of the silicon surface in HBF4// Mikroelektronika24(4), p. 315-320 (1995) (in Russian).
27. V.V. Korobtsov, O.N. Fidyanin, A.P. Shaporenko, V.V. Balashov, Influence of the chemical treatment way on the wettability of Si(111) surface // Zhurnal tekhnicheskoi fiziki66(12), p. 134-137 (1996) (in Russian).
28. Mechanism of HF etching of silicon surfaces: a theoretical understanding of hydrogen passivation / G. Trucks, K. Raghavachari, G. Higashi, Y. Chabal // Phys. Rev. Lett. 65(4), p. 504-507 (1990).
https://doi.org/10.1103/PhysRevLett.65.504
29. Ya. Hiroshi, Correlation between reliability and oxidation temperature for ultra-dry ultrathin silicon oxide films // J. Electron. Mater. 28(4), p. 377-384 (1999).
https://doi.org/10.1007/s11664-999-0237-1
30. T. Akinobu, K. Kiyoteru, O. Yoshikozu et al., Highly reliable SiO2 films formed by UV-O2 oxidation // Jpn J. Appl. Phys. Pt.1. 37(3b), p. 1122-1124 (1998).
https://doi.org/10.1143/JJAP.37.1122
31. Zhang Jun-Ying, Boyd Ian W. Low temperature photo-oxidation of silicon using a xenon excimer lamp // Appl. Phys. Lett. 71(20), p. 2964-2966 (1997).
https://doi.org/10.1063/1.120230
32. V.I. Sokolov, V.V. Plotnikov, A.M. Skvortsov et al., Peculiarities of thermal silicon oxidation, which are caused by structural mismatch at the interphase boundary // Izvestiya vuzov. Electronika. No 5, p.17-21 (2002) (in Russian).
33. D.K. Biegelsen, M.D. Moyer, N.M. Johnson et al., Characteristic electronic defects at the Si-SiO2 interface // Appl. Phys. Lett. 43(6), p. 563-565 (1983).
https://doi.org/10.1063/1.94420
34. G.J. Gerardi, E.H. Poindexter, P.J. Caplan, N.M. Johnson, Interface traps and Pb centers in oxidized (100) silicon wafer // Appl. Phys. Lett. 49(6), p. 348-350 (1986).
https://doi.org/10.1063/1.97611
35. D. Sands, K.M. Brunson, M.H.Tayarani-Nayaran. Measured intrinsic defectdensity throughout the entire band gap at the Si(100) / SiO2 interface // Semicond.Sci.Technol. 7(8), p. 1091-1096 (1992).
https://doi.org/10.1088/0268-1242/7/8/011
36. S. Ozder, I. Atilgan, B. Katircioglu. Temperature dependence of the capture cross section determined by DLTS on an MOS structure // Semicond. Sci. Technol. 10(11), p. 1510-1519 (1995).
https://doi.org/10.1088/0268-1242/10/11/013
37. A. Stesmans, B. Nouwen, V.V. Afanas′ev, 29Si hyperfine structure of the Pb1interface defect in thermal Si(100) / SiO2 // J. Phys. Condens. Matter.10(27), p. L.465-472 (1998).
https://doi.org/10.1088/0953-8984/10/27/004
38. Z.S. Gribnikov, V.I. Mel'nikov, Electron-hole scattering in semiconductors at high injection levels // Fizika i tekhnika poluprovodnikov 2(9), p. 1352-1360 (1968).
39. S.I. Kirillova, V.Ye. Primachenko, V.A. Chernobai, Photomemory effect for the surface potential under various states of the silicon surface // Optoelektronika i poluprovodnikovaya tekhnika No 21, p. 60-63 (1991) (in Russian).
40. V.E. Primachenko, O.V. Snitko, V.V. Milenin, Nonequilibrium field effect on Si in the region of high depletion // Phys. status solidi 11(3), p. 711-718 (1965).
https://doi.org/10.1002/pssb.19650110222
41. H. Andermann, W. Henrion, M.Rebien, H-terminated silicon: spectroscopic ellipsometry measurements correlated to the surface electronic properties // Thin Solid Films 313/314(5), p. 552-556 (1998).
https://doi.org/10.1016/S0040-6090(97)00882-1
42. Yu.A. Novikov, A.V. Rakov, S.V. Sedov, I.B. Strizhkov, Measurements of the thickness of natural oxide on silicon by using scanning electron microscopy // Poverkhnost'No 1, p. 52-55 (1995).
43. A. Stesman, V.V.Afanas′ev, Undetectability of the Pb1point defect as an interface state in thermal (100)Si / SiO2// J. Phys. Condens. Matter. 10(1), p. L.19-25 (1998).
https://doi.org/10.1088/0953-8984/10/1/003
44. T.D. Mishima, P.M. Lenehan, Do Pb1centers have levels in Si band gap? SDR study of Pb1 ′′hyperfine spectrum′′ // Appl. Phys. Lett. 76(25), p. 3771-3773 (2000).
https://doi.org/10.1063/1.126776
45. Y.W.Lam, Surface - state density and surface potential in MIS capacitorsby surface photovoltage measurements // J. Appl. Phys. 42(4), p. 1370-1379 (1971).
https://doi.org/10.1088/0022-3727/4/9/318
46. S.I. Kirillova, V.Ye. Primachenko, V.A. Chernobai, The system of fast electron states on the real germanium surface // Fizika i tekhnika poluprovodnikov 30(1), p. 118-127 (1996).
47. O.S. Frolov. On interpretation of the field effect in germanium and silicon // Ibid. 1(5), p. 784-786 (1967) (in Russian).
48. V.F. Kiselev, S.N. Kozlov, A.V. Zoteyev, Basics of solid surface physics. Published in Moscow State University. Moscow (1999).
49. I.P. Lisovsky, Investigation of the structural configuration and chemical composition of dielectric films by using the method of IR spectroscopy // Optoelektronika i poluprovodnikovaya tekhnika No 26, p. 93-111 (1993) (in Russian).
50. K. Eriguchi, Y. Harada, M. Niwa, Effects of strained layer near SiO2-Si interface on electrical characteristics of ultrathin gate oxides // J. Appl. Phys. 87(4), p. 1990-1995 (2000).
https://doi.org/10.1063/1.372125
51. A. Szekeres, A. Paneva, S. Alexandrova, I. Lisovsky, V. Litovchenko, D. Mazunov. Optical study of ultrathin SiO2grown on hydrogenated silicon // Vacuum69(2), p. 355-360 (2003).
https://doi.org/10.1016/S0042-207X(02)00358-5
52. W.L. Warren, J.R. Schwark, M.R. Shaneyfelt et al., Hydrogen interactions with delocalized spin center in buried SiO2thin films // Appl.Phys.Lett. 62(14), p. 1661-1663 (1993).
https://doi.org/10.1063/1.108619
53. A. Stesmans, V.V. Afanas′ev. Annealing induced degradation of thermal SiO2: S center generation // Appl. Phys. Lett. 69(14), p. 2056-2058 (1996).
https://doi.org/10.1063/1.116878
54. A. Stesmans, V.V. Afanas′ev, Point defect generation in SiO2 by interaction with SiO at elevated temperatures // Microelectronic Engineering 36(2), p. 201-204 (1997).
https://doi.org/10.1016/S0167-9317(97)00048-8
55. V.A. Gritsenko, Yu.N. Novikov, A.V. Shaposhnikov, Yu.N. Morokov, Numerical modelling of intrinsic defects in SiO2 and Si3N4 // Fizika i tekhnika polupropvodnikov 35(9), p.1041-1049 (2001) (in Russian).
https://doi.org/10.1134/1.1403563
56. Ye.I. Verkhovsky, G.I. Yepifanov, Internal strains in silicon mono- and dioxide films // Obzory po elektronnoi tekhnike.Ser. Poluorovodnikovyye pribory. No 9(42), p. 1-24 (1972) (in Russian).
57. V.P. Alekhin, Physics of fastness and plasticity of material surface layers. Nauka, Moscow (1983) (in Russian).
58. Yu.A. Kontsevoi, Yu.M. Litvinov, E.A. Fattakhov, Plasticity and fastness of semiconductor materials and structures. Radio i svyaz, Moscow (1982).
59. S.S. Gorelik, Yu.M. Litvinov, V.G. Postolov, A.V. Prikhod'ko, Strains created by dielectric coatings in silicon // Elektronnaya tekhnika. Ser. Mikroelektronika. No 4(116), p. 82-86 (1985) (in Russian).
60. L.A. Matveeva, G.N. Semenova, L.S. Khazan, Internal mechanical strains in the Si-SiO2system // Abstracts of the 2nd All-Union Conference "Physics of oxide films", Pt. 2, p. 5-6. Petrozavodsk, 1987.
61. T. Brozhek, V.Ya. Kiblik, Influence of mechanical strains on electrical and radiation properties of Si-SiO2 structures // Optoelektronika i poluprovod-nikovaya tekhnika No 22, p. 53-62 (1992) (in Russian).
62. N.N. Gerasimenko, V.N. Mordkovich, Radiation effects in the semiconductor-dielectric system // Poverkhnost', No 6, p. 5-19 (1987) (in Russian).
63. V.N. Ovsyuk, A.V. Rzhanov, On quasi-continuous spectrum of levels in the forbidden band of the semiconductor surface // Fizika i tekhnika poluprovodnikov 3(2), p. 294-296 (1969), (in Russian).
64. Yu.A. Zarif'yants, V.F. Kiselev, S.N. Kozlov, Yu.F. Novototsky-Vlasov, About the energy spectrum of fast electron traps at the real semiconductor surface // Vestnik Moscovskogo universiteta. Fizika. No 1, p. 84-91 (1975) (in Russian).
65. V.L. Bonch-Bruyevich, I.P. Zvyagin, R. Kaiper, Electron theory of disordered semiconductors. Nauka, Moscow (1981) (in Russian).
66. P.I. Grunthaner, F.J. Grunthaner. High-resolution x-ray photoelectron spectroscopy as a probe of local atomic structure // Phys. Rev. Lett. 43(22), p. 1683-1686 (1979).
https://doi.org/10.1103/PhysRevLett.43.1683
67. R.B. Laughlin, J.D. Joannopoulos, D.J.Chadi, Theory of the electronic structure of the Si-SiO2 interface // Phys. Rev. B. 21(12), p. 5733-5744 (1980).
https://doi.org/10.1103/PhysRevB.21.5733
68. E. Martinex, F.Yndurain, Possibility of intrinsic Si states localized at the Si-SiO2 interface // Phys. Rev. B 25(10), p. 6511-6513 (1982).
https://doi.org/10.1103/PhysRevB.25.6511
69. D. Pierreux, A. Stesmans, Interface strain in thermal Si(111)-SiO2 analysed by frequency dependent electron spin resonance // Physica B 308-310(4), p. 481-484 (2001).
https://doi.org/10.1016/S0921-4526(01)00749-9
70. H. Kageshima, K. Shiraishi, Microscopic mechanism for Si/SiO2 interface passivation : Si=O double bond formation // Surface Science 380(1), p. 61-65 (1997).
https://doi.org/10.1016/S0039-6028(96)01568-3
71. V.V. Afanas′ev, A.Stesmans, Blockage of the annealing-induced Si / SiO2 degradation by helium // Appl. Phys. Lett.74(7), p. 1009-1011 (1999).
https://doi.org/10.1063/1.123438
72. A.Stesmans, Comparative analysis of the H2 passivation of interface defects at the (100)Si / SiO2 interface using ESR // Solid State Communs 97(4), p. 255-259 (1996).
https://doi.org/10.1016/0038-1098(95)00535-8
73. A.Stesmans, Revesion of H2 passivation of Pb interface defects in standart (111)Si / SiO2 // Appl. Phys. Lett. 68(19), p. 2723-2725 (1996).
https://doi.org/10.1063/1.115577
74. L.D. Thanh, P.Balk, Elimination and generation of Si / SiO2 interface traps by low temperature hydrogen annealing // J. Electrochem. Soc. 135(7), p. 1797-1801 (1988).
https://doi.org/10.1149/1.2096133
75. G.V.Gadiyak, Physical model and numerical results of dissociation kinetics of hydrogen-passivated Si/SiO2 interface defects // Thin Solid Films. 350(1/2), p. 147-152 (1999).
https://doi.org/10.1016/S0040-6090(99)00288-6
76. E. Cartier, J.H. Stathis, D.A.Buchanan, Passivation and depassivation of silicon dangling bonds at the Si/SiO2 interface by atomic hydrogen // Appl. Phys. Lett. 63(11), p.1510-1512 (1993).
https://doi.org/10.1063/1.110758
77. R.E.Stahlbush, Slow and fast state formation caused by hydrogen // Proc. 3 Intern. symposium ′′The physics and chemistry of SiO2 and the Si-SiO2 interface′′. Pennington, NY: 1996.Vol.96-1, p. 525-537.
78. V.V. Afanas′ev, A.Stesmans, Positively charged bonded states of hydrogen at the (111)Si / SiO2 interface // J. Phys.:Condens. Matter. 10(1), p. 89-93 (1998).
https://doi.org/10.1088/0953-8984/10/1/010
79. L.G. Gosset, J.J. Ganen, H.J. Bardeleben et al., Formation of modified Si / SiO2 interfaces with intrinsic low defect concentrations // J. Appl. Phys. 85(7), p. 3661-3665 (1999).
https://doi.org/10.1063/1.369730
80. Ha Yong Ho, Kim Schum, Lee Sun Young et al., Relaxation of the Si lattice strain in the Si(100)-SiO2 interface by annealing in N2 O // Appl. Phys. Lett. 74(23), p. 3510-3512 (1999).
https://doi.org/10.1063/1.124146
81. X. Chen, J.M. Gibson, Roughness at Si / SiO2 interfaces and silicon oxidation // J. Vac. Sci. Technol. A17(4), Pt.1, p. 1269-1274 (1999).
https://doi.org/10.1116/1.581807
82. L. Lai, K.J. Hebert, E.A. Irene, A study of the relationship between Si/SiO2 interface charges and roughness // J. Vac. Sci. Technol. B 17(1), p. 53-59 (1999).
https://doi.org/10.1116/1.590516
83. T. Brozhek, V.Ya. Kiblik, V.G. Litovchenko et al., Radiation-enhanced effects in layered MDS structures. Preprint No 4-88 of the Institute for Semiconductors, Academy of Sciences of Ukraine. Kiev, 1988.
84. F.J. Grunthaner, P.J. Grunthaner, J.Maserijon, Radiation induced defects in SiO2 as determined by XPS // IEEE Trans. Nucl. Sci. 29(6), p. 1462-1466 (1982).
https://doi.org/10.1109/TNS.1982.4336387
85. F.J. Grunthaner, P.J.Grunthaner, Chemical and electronic structure of Si/SiO2 interface // Mat. Sci. Rep. No 2/3, p. 65-160 (1986).
https://doi.org/10.1016/S0920-2307(86)80001-9
86. P.M. Lenahan, P.V. Dressendorfer, Microstructural variations in radiation hard and soft oxides observed through ESR // EEE Trans. Nucl. Sci. 30(6), p. 4602-4604 (1983).
https://doi.org/10.1109/TNS.1983.4333179
87. N. Haneji, L. Vishnubhota, T.P. Ma, Possible observation of Pbo and Pb1 center at irradiated (100)Si/SiO2 interface from electrical measurements // Appl. Phys. Lett. 59(26), p. 3416-3418 (1991).
https://doi.org/10.1063/1.105693
88. P.M. Lenaham, T.D. Mishima, T.M. Fogarty, R. Wilkins, Atomic- scale processes involved in long-term changes in the density of state distribution at the Si/SiO2 interface // Appl. Phys. Lett. 79(20), p. 3266-3268 (2001).
https://doi.org/10.1063/1.1418261
89. M.N. Levin, Ye.N. Bormontov, O.V. Volkov, S.S. Ostroukhov, A.V. Tatarintsev, Enhanced generation of surface states in MDS-elements of intergrated circuits after action of UV and X-ray radiations // Mikroelektronika 30(1), p. 16-21 (2001).
https://doi.org/10.1023/A:1009409522416
90. S.K. Boitsov, A.Ya. Vul', A.T. Dideykin et al., Processes of current transfer through tunnel-transparent dielectric of STDS structures // Fizika tverdogo tela 33(6), p. 1784-1791 (1991) (in Russian).
91. L.Do Thanh, M. Aslam, P.Balk, Defect structure and generation of interface states in MOS structures // Solid State Electronics 29(8), p. 829-840 (1986).
https://doi.org/10.1016/0038-1101(86)90186-3
92. T.B. Hook, T.P. Ma, Hot electron induced interface traps in MOS capacitors // Appl. Phys. Lett. 48(18), p. 1208-1210 (1986).
https://doi.org/10.1063/1.96983
93. W.D. Zhang, J.F. Zhang, M.J. Uren et al., On the interface states generated under different stress condition // Appl. Phys. Lett. 79(19), p. 3092-3094 (2001).
https://doi.org/10.1063/1.1416168
94. S. Ogawa, N.Shiono, Interface-trap generation induced by hot-hole injection at the Si-SiO2 interface // Appl. Phys. Lett. 61(7), p. 807-809 (1992).
https://doi.org/10.1063/1.107751
95. S. Kar, Ultimate gate oxide thinness set by recombination tunneling of electrons via Si-SiO2 interface traps // J. Appl. Phys. 88(5), p. 2693 (2000).
https://doi.org/10.1063/1.1287114