Semiconductor Physics, Quantum Electronics and Optoelectronics, 8 (4) P. 038-054 (2005).
References
1. I. Tamm, Uber eine mogliche Art der Elektronen-bindung an Krista lloberflachen // Phys. Z. Sowjetunion1, p.733-736 (1932). | | 2. W.Shockley, On the surface states associated with a periodic potential // Phys. Rev. 56, p. 317-320 (1939). https://doi.org/10.1103/PhysRev.56.317 | | 3. W. Shockley, G.L.Pearson, Modulation of conductance of thin films of semiconductors by surface charge // Phys. Rev. 74, p. 232-236 (1948). https://doi.org/10.1103/PhysRev.74.232 | | 4. A. Many, Y. Goldstein, N.B. Grover, Semiconductor surfaces. John Willey and Sons, N.Y. (1965). | | 5. V.I. Lyashenko, V.G. Litovchenko, I.I. Stepko, Electron properties on semiconductor surface. Naukova dumka, Kiev (1968) (in Russian). | | 6. A.V. Rzhanov, Electron processeson semiconductor surface. Nauka, Moscow (1971) (in Russian). | | 7. M.M. Attalla, E. Tannenbaum, E.E. Schebner, Stabilization of silicon surfaces by thermally grown oxides // Bell Syst. Techn. J. 30(5), p. 749-765 (1959). https://doi.org/10.1002/j.1538-7305.1959.tb03907.x | | 8. Kahng D., Attalla M.M. Si-SiO2field induced surface device // IRE Solid State. Dev.Res. Conf., Pittsburg, 1960. | | 9. V.G. Litovchenko, A.P. Gorban'. Physics of microelectronic systems metal-dielectric-semiconductor. Naukova dumka, Kiev (1978) (in Russian). | | 10. Properties of the structures metal-dielectric-semiconductor. Ed. by A.V. Rzhanov. Nauka, Moscow (1976) (in Russian). | | 11. V.S. Vavilov, V.F. Kiselyov, B.N. Mukashev. Defects in silicon and on its surface. Nauka, Moscow (1990) (in Russian). | | 12. A.P. Baraban, V.V. Bulavinov, P.P. Konorov. Electron properties of SiO2 layers on silicon. Published in Leningrad State University, Leningrad (1988) (in Russian). | | 13. The physics and chemistry of SiO2 and the Si-SiO2 interface. // Proc. 3 Intern. Symposium. NJ, Pennington (1996). | | 14. M.L. Green, E.P. Gusev, R. Degraeve, E.L. Garfunkеl, Ultrathin SiO2 and Si-O-N dielectric layers for silicon microelectronics // Appl. Phys. Rev. 90(5), p. 2057-2121 (2001). https://doi.org/10.1063/1.1385803 | | 15. P.V. Gray, D.M.Brawn, Density of Si-SiO2 interface states // Appl. Phys. Lett. 8(2), p. 31-33 (1966). https://doi.org/10.1063/1.1754468 | | 16. N.M. Johnson, Energy-resolved DLTS measurments of interface states in MIS structures // Appl. Phys. Lett. 34(11), p. 802-804 (1979). https://doi.org/10.1063/1.90650 | | 17. S.I. Kirillova, V.Ye. Primachenko, O.V. Snitko, V.A. Chernobai, Electron properties of the silicon surface in its various physico-chemical states // Poverkhnost' No 11, p.74-79 (1991) (in Russian). | | 18. S.I. Kirillova, M.D. Moin, V.Ye. Primachenko, S.V. Svechnikov, V.A. Chernobai, I.N. Dubrov, Changes of electron properties of the Si-SiO2 system after laser irradiation // Fizika i tekhnika poluprovodnikov 26(8), p. 1399-1404 (1992) (in Russian). | | 19. Ye.F. Venger, S.I. Kirillova, V.Ye. Primachenko, V.A. Chernobai, The system of surface electron states inherent to thermally oxidized and real silicon surfaces // Ukrainskiy fizicheskiy zhurnal 42(11/12), p. 1333-1339 (1997) (in Russian). | | 20. S.I. Kirillova, V.Ye. Primachenko, A.A. Serba, V.A. Chernobai, The system of discrete electron states at the interface Si(100)-SiO2 // Mikroelektronika 29(5), p. 390-394 (2000) (in Russian). https://doi.org/10.1007/BF02773286 | | 21. S.I.Kirillova, V.E.Primachenko, E.F Venger, V.A.Chernobai, Electron properties of silicon surface at different oxide film conditions // Semiconductor Physics, Quantum Electronics and Optoelectronics4 (1), p.12-22 (2001). | | 22. E.H. Poindexter, MOS interface states : overview and physicochemical perspectives // Semicond. Sci. Technol. 4(12), p. 961-969 (1989). https://doi.org/10.1088/0268-1242/4/12/001 | | 23. G.I. Pietsch, Ubiquitous surfaces termination of the wet-chemical processing // Appl. Phys. A60(4), p. 347-363 (1995). https://doi.org/10.1007/BF01538334 | | 24. G.F. Cerofolini, L. Meda, Chemistry at silicon crystalline surfaces // Appl. Surf. Science 89(4), p. 351-360 (1995). https://doi.org/10.1016/0169-4332(95)00050-X | | 25. V.Ye. Primachenko, O.V. Snitko, Physics of the semiconductor surface doped with metals. Naukova dumka, Kiev (1988) (in Russian). | | 26. V.I. Beklemishev, B.G. Gribov, V.V. Levenets, I.I. Manokhin, Passivation of the silicon surface in HBF4// Mikroelektronika24(4), p. 315-320 (1995) (in Russian). | | 27. V.V. Korobtsov, O.N. Fidyanin, A.P. Shaporenko, V.V. Balashov, Influence of the chemical treatment way on the wettability of Si(111) surface // Zhurnal tekhnicheskoi fiziki66(12), p. 134-137 (1996) (in Russian). | | 28. Mechanism of HF etching of silicon surfaces: a theoretical understanding of hydrogen passivation / G. Trucks, K. Raghavachari, G. Higashi, Y. Chabal // Phys. Rev. Lett. 65(4), p. 504-507 (1990). https://doi.org/10.1103/PhysRevLett.65.504 | | 29. Ya. Hiroshi, Correlation between reliability and oxidation temperature for ultra-dry ultrathin silicon oxide films // J. Electron. Mater. 28(4), p. 377-384 (1999). https://doi.org/10.1007/s11664-999-0237-1 | | 30. T. Akinobu, K. Kiyoteru, O. Yoshikozu et al., Highly reliable SiO2 films formed by UV-O2 oxidation // Jpn J. Appl. Phys. Pt.1. 37(3b), p. 1122-1124 (1998). https://doi.org/10.1143/JJAP.37.1122 | | 31. Zhang Jun-Ying, Boyd Ian W. Low temperature photo-oxidation of silicon using a xenon excimer lamp // Appl. Phys. Lett. 71(20), p. 2964-2966 (1997). https://doi.org/10.1063/1.120230 | | 32. V.I. Sokolov, V.V. Plotnikov, A.M. Skvortsov et al., Peculiarities of thermal silicon oxidation, which are caused by structural mismatch at the interphase boundary // Izvestiya vuzov. Electronika. No 5, p.17-21 (2002) (in Russian). | | 33. D.K. Biegelsen, M.D. Moyer, N.M. Johnson et al., Characteristic electronic defects at the Si-SiO2 interface // Appl. Phys. Lett. 43(6), p. 563-565 (1983). https://doi.org/10.1063/1.94420 | | 34. G.J. Gerardi, E.H. Poindexter, P.J. Caplan, N.M. Johnson, Interface traps and Pb centers in oxidized (100) silicon wafer // Appl. Phys. Lett. 49(6), p. 348-350 (1986). https://doi.org/10.1063/1.97611 | | 35. D. Sands, K.M. Brunson, M.H.Tayarani-Nayaran. Measured intrinsic defectdensity throughout the entire band gap at the Si(100) / SiO2 interface // Semicond.Sci.Technol. 7(8), p. 1091-1096 (1992). https://doi.org/10.1088/0268-1242/7/8/011 | | 36. S. Ozder, I. Atilgan, B. Katircioglu. Temperature dependence of the capture cross section determined by DLTS on an MOS structure // Semicond. Sci. Technol. 10(11), p. 1510-1519 (1995). https://doi.org/10.1088/0268-1242/10/11/013 | | 37. A. Stesmans, B. Nouwen, V.V. Afanas′ev, 29Si hyperfine structure of the Pb1interface defect in thermal Si(100) / SiO2 // J. Phys. Condens. Matter.10(27), p. L.465-472 (1998). https://doi.org/10.1088/0953-8984/10/27/004 | | 38. Z.S. Gribnikov, V.I. Mel'nikov, Electron-hole scattering in semiconductors at high injection levels // Fizika i tekhnika poluprovodnikov 2(9), p. 1352-1360 (1968). | | 39. S.I. Kirillova, V.Ye. Primachenko, V.A. Chernobai, Photomemory effect for the surface potential under various states of the silicon surface // Optoelektronika i poluprovodnikovaya tekhnika No 21, p. 60-63 (1991) (in Russian). | | 40. V.E. Primachenko, O.V. Snitko, V.V. Milenin, Nonequilibrium field effect on Si in the region of high depletion // Phys. status solidi 11(3), p. 711-718 (1965). https://doi.org/10.1002/pssb.19650110222 | | 41. H. Andermann, W. Henrion, M.Rebien, H-terminated silicon: spectroscopic ellipsometry measurements correlated to the surface electronic properties // Thin Solid Films 313/314(5), p. 552-556 (1998). https://doi.org/10.1016/S0040-6090(97)00882-1 | | 42. Yu.A. Novikov, A.V. Rakov, S.V. Sedov, I.B. Strizhkov, Measurements of the thickness of natural oxide on silicon by using scanning electron microscopy // Poverkhnost'No 1, p. 52-55 (1995). | | 43. A. Stesman, V.V.Afanas′ev, Undetectability of the Pb1point defect as an interface state in thermal (100)Si / SiO2// J. Phys. Condens. Matter. 10(1), p. L.19-25 (1998). https://doi.org/10.1088/0953-8984/10/1/003 | | 44. T.D. Mishima, P.M. Lenehan, Do Pb1centers have levels in Si band gap? SDR study of Pb1 ′′hyperfine spectrum′′ // Appl. Phys. Lett. 76(25), p. 3771-3773 (2000). https://doi.org/10.1063/1.126776 | | 45. Y.W.Lam, Surface - state density and surface potential in MIS capacitorsby surface photovoltage measurements // J. Appl. Phys. 42(4), p. 1370-1379 (1971). https://doi.org/10.1088/0022-3727/4/9/318 | | 46. S.I. Kirillova, V.Ye. Primachenko, V.A. Chernobai, The system of fast electron states on the real germanium surface // Fizika i tekhnika poluprovodnikov 30(1), p. 118-127 (1996). | | 47. O.S. Frolov. On interpretation of the field effect in germanium and silicon // Ibid. 1(5), p. 784-786 (1967) (in Russian). | | 48. V.F. Kiselev, S.N. Kozlov, A.V. Zoteyev, Basics of solid surface physics. Published in Moscow State University. Moscow (1999). | | 49. I.P. Lisovsky, Investigation of the structural configuration and chemical composition of dielectric films by using the method of IR spectroscopy // Optoelektronika i poluprovodnikovaya tekhnika No 26, p. 93-111 (1993) (in Russian). | | 50. K. Eriguchi, Y. Harada, M. Niwa, Effects of strained layer near SiO2-Si interface on electrical characteristics of ultrathin gate oxides // J. Appl. Phys. 87(4), p. 1990-1995 (2000). https://doi.org/10.1063/1.372125 | | 51. A. Szekeres, A. Paneva, S. Alexandrova, I. Lisovsky, V. Litovchenko, D. Mazunov. Optical study of ultrathin SiO2grown on hydrogenated silicon // Vacuum69(2), p. 355-360 (2003). https://doi.org/10.1016/S0042-207X(02)00358-5 | | 52. W.L. Warren, J.R. Schwark, M.R. Shaneyfelt et al., Hydrogen interactions with delocalized spin center in buried SiO2thin films // Appl.Phys.Lett. 62(14), p. 1661-1663 (1993). https://doi.org/10.1063/1.108619 | | 53. A. Stesmans, V.V. Afanas′ev. Annealing induced degradation of thermal SiO2: S center generation // Appl. Phys. Lett. 69(14), p. 2056-2058 (1996). https://doi.org/10.1063/1.116878 | | 54. A. Stesmans, V.V. Afanas′ev, Point defect generation in SiO2 by interaction with SiO at elevated temperatures // Microelectronic Engineering 36(2), p. 201-204 (1997). https://doi.org/10.1016/S0167-9317(97)00048-8 | | 55. V.A. Gritsenko, Yu.N. Novikov, A.V. Shaposhnikov, Yu.N. Morokov, Numerical modelling of intrinsic defects in SiO2 and Si3N4 // Fizika i tekhnika polupropvodnikov 35(9), p.1041-1049 (2001) (in Russian). https://doi.org/10.1134/1.1403563 | | 56. Ye.I. Verkhovsky, G.I. Yepifanov, Internal strains in silicon mono- and dioxide films // Obzory po elektronnoi tekhnike.Ser. Poluorovodnikovyye pribory. No 9(42), p. 1-24 (1972) (in Russian). | | 57. V.P. Alekhin, Physics of fastness and plasticity of material surface layers. Nauka, Moscow (1983) (in Russian). | | 58. Yu.A. Kontsevoi, Yu.M. Litvinov, E.A. Fattakhov, Plasticity and fastness of semiconductor materials and structures. Radio i svyaz, Moscow (1982). | | 59. S.S. Gorelik, Yu.M. Litvinov, V.G. Postolov, A.V. Prikhod'ko, Strains created by dielectric coatings in silicon // Elektronnaya tekhnika. Ser. Mikroelektronika. No 4(116), p. 82-86 (1985) (in Russian). | | 60. L.A. Matveeva, G.N. Semenova, L.S. Khazan, Internal mechanical strains in the Si-SiO2system // Abstracts of the 2nd All-Union Conference "Physics of oxide films", Pt. 2, p. 5-6. Petrozavodsk, 1987. | | 61. T. Brozhek, V.Ya. Kiblik, Influence of mechanical strains on electrical and radiation properties of Si-SiO2 structures // Optoelektronika i poluprovod-nikovaya tekhnika No 22, p. 53-62 (1992) (in Russian). | | 62. N.N. Gerasimenko, V.N. Mordkovich, Radiation effects in the semiconductor-dielectric system // Poverkhnost', No 6, p. 5-19 (1987) (in Russian). | | 63. V.N. Ovsyuk, A.V. Rzhanov, On quasi-continuous spectrum of levels in the forbidden band of the semiconductor surface // Fizika i tekhnika poluprovodnikov 3(2), p. 294-296 (1969), (in Russian). | | 64. Yu.A. Zarif'yants, V.F. Kiselev, S.N. Kozlov, Yu.F. Novototsky-Vlasov, About the energy spectrum of fast electron traps at the real semiconductor surface // Vestnik Moscovskogo universiteta. Fizika. No 1, p. 84-91 (1975) (in Russian). | | 65. V.L. Bonch-Bruyevich, I.P. Zvyagin, R. Kaiper, Electron theory of disordered semiconductors. Nauka, Moscow (1981) (in Russian). | | 66. P.I. Grunthaner, F.J. Grunthaner. High-resolution x-ray photoelectron spectroscopy as a probe of local atomic structure // Phys. Rev. Lett. 43(22), p. 1683-1686 (1979). https://doi.org/10.1103/PhysRevLett.43.1683 | | 67. R.B. Laughlin, J.D. Joannopoulos, D.J.Chadi, Theory of the electronic structure of the Si-SiO2 interface // Phys. Rev. B. 21(12), p. 5733-5744 (1980). https://doi.org/10.1103/PhysRevB.21.5733 | | 68. E. Martinex, F.Yndurain, Possibility of intrinsic Si states localized at the Si-SiO2 interface // Phys. Rev. B 25(10), p. 6511-6513 (1982). https://doi.org/10.1103/PhysRevB.25.6511 | | 69. D. Pierreux, A. Stesmans, Interface strain in thermal Si(111)-SiO2 analysed by frequency dependent electron spin resonance // Physica B 308-310(4), p. 481-484 (2001). https://doi.org/10.1016/S0921-4526(01)00749-9 | | 70. H. Kageshima, K. Shiraishi, Microscopic mechanism for Si/SiO2 interface passivation : Si=O double bond formation // Surface Science 380(1), p. 61-65 (1997). https://doi.org/10.1016/S0039-6028(96)01568-3 | | 71. V.V. Afanas′ev, A.Stesmans, Blockage of the annealing-induced Si / SiO2 degradation by helium // Appl. Phys. Lett.74(7), p. 1009-1011 (1999). https://doi.org/10.1063/1.123438 | | 72. A.Stesmans, Comparative analysis of the H2 passivation of interface defects at the (100)Si / SiO2 interface using ESR // Solid State Communs 97(4), p. 255-259 (1996). https://doi.org/10.1016/0038-1098(95)00535-8 | | 73. A.Stesmans, Revesion of H2 passivation of Pb interface defects in standart (111)Si / SiO2 // Appl. Phys. Lett. 68(19), p. 2723-2725 (1996). https://doi.org/10.1063/1.115577 | | 74. L.D. Thanh, P.Balk, Elimination and generation of Si / SiO2 interface traps by low temperature hydrogen annealing // J. Electrochem. Soc. 135(7), p. 1797-1801 (1988). https://doi.org/10.1149/1.2096133 | | 75. G.V.Gadiyak, Physical model and numerical results of dissociation kinetics of hydrogen-passivated Si/SiO2 interface defects // Thin Solid Films. 350(1/2), p. 147-152 (1999). https://doi.org/10.1016/S0040-6090(99)00288-6 | | 76. E. Cartier, J.H. Stathis, D.A.Buchanan, Passivation and depassivation of silicon dangling bonds at the Si/SiO2 interface by atomic hydrogen // Appl. Phys. Lett. 63(11), p.1510-1512 (1993). https://doi.org/10.1063/1.110758 | | 77. R.E.Stahlbush, Slow and fast state formation caused by hydrogen // Proc. 3 Intern. symposium ′′The physics and chemistry of SiO2 and the Si-SiO2 interface′′. Pennington, NY: 1996.Vol.96-1, p. 525-537. | | 78. V.V. Afanas′ev, A.Stesmans, Positively charged bonded states of hydrogen at the (111)Si / SiO2 interface // J. Phys.:Condens. Matter. 10(1), p. 89-93 (1998). https://doi.org/10.1088/0953-8984/10/1/010 | | 79. L.G. Gosset, J.J. Ganen, H.J. Bardeleben et al., Formation of modified Si / SiO2 interfaces with intrinsic low defect concentrations // J. Appl. Phys. 85(7), p. 3661-3665 (1999). https://doi.org/10.1063/1.369730 | | 80. Ha Yong Ho, Kim Schum, Lee Sun Young et al., Relaxation of the Si lattice strain in the Si(100)-SiO2 interface by annealing in N2 O // Appl. Phys. Lett. 74(23), p. 3510-3512 (1999). https://doi.org/10.1063/1.124146 | | 81. X. Chen, J.M. Gibson, Roughness at Si / SiO2 interfaces and silicon oxidation // J. Vac. Sci. Technol. A17(4), Pt.1, p. 1269-1274 (1999). https://doi.org/10.1116/1.581807 | | 82. L. Lai, K.J. Hebert, E.A. Irene, A study of the relationship between Si/SiO2 interface charges and roughness // J. Vac. Sci. Technol. B 17(1), p. 53-59 (1999). https://doi.org/10.1116/1.590516 | | 83. T. Brozhek, V.Ya. Kiblik, V.G. Litovchenko et al., Radiation-enhanced effects in layered MDS structures. Preprint No 4-88 of the Institute for Semiconductors, Academy of Sciences of Ukraine. Kiev, 1988. | | 84. F.J. Grunthaner, P.J. Grunthaner, J.Maserijon, Radiation induced defects in SiO2 as determined by XPS // IEEE Trans. Nucl. Sci. 29(6), p. 1462-1466 (1982). https://doi.org/10.1109/TNS.1982.4336387 | | 85. F.J. Grunthaner, P.J.Grunthaner, Chemical and electronic structure of Si/SiO2 interface // Mat. Sci. Rep. No 2/3, p. 65-160 (1986). https://doi.org/10.1016/S0920-2307(86)80001-9 | | 86. P.M. Lenahan, P.V. Dressendorfer, Microstructural variations in radiation hard and soft oxides observed through ESR // EEE Trans. Nucl. Sci. 30(6), p. 4602-4604 (1983). https://doi.org/10.1109/TNS.1983.4333179 | | 87. N. Haneji, L. Vishnubhota, T.P. Ma, Possible observation of Pbo and Pb1 center at irradiated (100)Si/SiO2 interface from electrical measurements // Appl. Phys. Lett. 59(26), p. 3416-3418 (1991). https://doi.org/10.1063/1.105693 | | 88. P.M. Lenaham, T.D. Mishima, T.M. Fogarty, R. Wilkins, Atomic- scale processes involved in long-term changes in the density of state distribution at the Si/SiO2 interface // Appl. Phys. Lett. 79(20), p. 3266-3268 (2001). https://doi.org/10.1063/1.1418261 | | 89. M.N. Levin, Ye.N. Bormontov, O.V. Volkov, S.S. Ostroukhov, A.V. Tatarintsev, Enhanced generation of surface states in MDS-elements of intergrated circuits after action of UV and X-ray radiations // Mikroelektronika 30(1), p. 16-21 (2001). https://doi.org/10.1023/A:1009409522416 | | 90. S.K. Boitsov, A.Ya. Vul', A.T. Dideykin et al., Processes of current transfer through tunnel-transparent dielectric of STDS structures // Fizika tverdogo tela 33(6), p. 1784-1791 (1991) (in Russian). | | 91. L.Do Thanh, M. Aslam, P.Balk, Defect structure and generation of interface states in MOS structures // Solid State Electronics 29(8), p. 829-840 (1986). https://doi.org/10.1016/0038-1101(86)90186-3 | | 92. T.B. Hook, T.P. Ma, Hot electron induced interface traps in MOS capacitors // Appl. Phys. Lett. 48(18), p. 1208-1210 (1986). https://doi.org/10.1063/1.96983 | | 93. W.D. Zhang, J.F. Zhang, M.J. Uren et al., On the interface states generated under different stress condition // Appl. Phys. Lett. 79(19), p. 3092-3094 (2001). https://doi.org/10.1063/1.1416168 | | 94. S. Ogawa, N.Shiono, Interface-trap generation induced by hot-hole injection at the Si-SiO2 interface // Appl. Phys. Lett. 61(7), p. 807-809 (1992). https://doi.org/10.1063/1.107751 | | 95. S. Kar, Ultimate gate oxide thinness set by recombination tunneling of electrons via Si-SiO2 interface traps // J. Appl. Phys. 88(5), p. 2693 (2000). https://doi.org/10.1063/1.1287114 | |
|
|