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Abstract. These hexagonal arrays are becoming increasingly popular, especially for their 
applications in the area of wireless communications. The overall objective of this article 
has been to use the theoretical foundation developed for the analysis of radiation patterns 
and design of the hexagonal arrays. A technique has been developed for the analysis of 
radiation patterns from concentric ring arrays. A family of functions, known as 
generalized Weierstrass functions, has been shown to play a key role in the theory of 
fractal radiation pattern analysis. 
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1. Introduction 

The name “fractal”, from the Latin “fractus” meaning 
broken, was given to highly irregular sets by Benoit 
Mandelbrot in his foundational essay in 1975 [1]. Since 
then, fractal geometry has attracted widespread, and 
sometimes controversial, attention. The subject has 
grown on two fronts: on the one hand, many “real 
fractals” of science and nature have been identified. On 
the other hand, mathematics that is available for 
studying fractal sets, a lot of which has its roots in 
geometric measure theory, has developed enormously 
with new tools emerging for fractal analysis. This paper 
concerned with mathematics of fractals and application 
to the antenna theory [2]. 

2. Theory  

The standard hexagonal arrays are formed by placing 
elements in equilateral triangular grid with spacings d. 
These arrays can also be rounded by several concentric 
six-element circular arrays of different radii [3, 4]. The 
resulting expression for the hexagonal array factor, in a 
normalized form, is given by [2].  
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and P is the number of concentric hexagons in the array. 
Hence, the total number of elements contained in an 
array with P hexagons is  

( ) 113 ++= PPN P . 

At this point: we investigate the possibility that 
useful designs for hexagonal arrays may be realized via 
a construction process based on the recursive application 
of a generating subarray. To demonstrate this, suppose 
we consider the uniformly excited six-element circular 
generating subarray of the radius 2/λ=r , shown in 
Fig. 1.  

This particular value of the radius was chosen so that 
these six elements in the array correspond to the vertices 
of a hexagon with half-wavelength sides (i. e., 2/λ=r ). 
Consequently, the array factor associated with this six-
element generating subarray may be shown to have the 
following representation:  
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Fig. 1. The geometry for a uniformly excited six-element 
circular subarray generator of the radius 2/λ=r . 

 
Fig. 2. The first four stages in the construction of a hexagonal 
array via the generating subarray illustrated in Fig. 1, with the 
expansion factor 2=δ .The element locations correspond to the 
vertices of the hexagons. 
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The array factor expression given in  (2) may also be 
written in the form 
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where  
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We will first examine the special case where the 
expansion factor of the recursive hexagonal array is 
assumed to be unity, i.e., 1=δ . Under these 
circumstances, equation (3) reduces to  
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These arrays increase in size at a rate that obeys the 
relationship 

( ) ( )plP PPN δ−++= 113 , 

where plδ  represents the Kronecker delta function 
defined by [2]  
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In other words, every time this fractal array evolves 
from one stage to the next, the number of concentric 
hexagonal subarray contained in it increases by one. 

The second special case of interest to be considered 
in this section results when a choice of 2=δ  is made. 
Substituting this value of δ  into (3) yields an expression 
for the recursive hexagonal array factor given by  
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where  
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Clearly, by comparing PN  (for 2=δ ) with PN  
(for 1=δ ), we conclude that these recursive arrays will 
grow at a much faster rate than those generated by a 
choice of 1=δ . The representations of the first four 
stages in the construction process of these arrays are 
illustrated in Fig. 2, where the element locations 
correspond to the vertices of the hexagons.  

Fig. 2 indicates that the hexagonal arrays resulting 
from the recursive construction process with 2=δ  have 
some elements missing, i. e., they are thinned.  

It is interesting to look what happens with these 
arrays when an element with two units of current is 
added to the center of the hexagonal generating subarray 
shown in Fig. 1. Under these circumstances, the 
expression for the array factor given in (3) must be 
modified in the following way: 
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Plots of a several radiation patterns calculated from 
(6) with 1=δ  and 2=δ  are shown in Figs 3 and 4, 
respectively. It is evident from Fig. 4 that the radiation 
patterns for these arrays have no side lobes. 
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Fig. 3. Plots of the far field radiation patterns produced by a series of four (P=1, 2, 3, and 4) fully populated hexagonal arrays 
generated with the expansion factor 1=δ . 

 
Fig. 4. Plots of the far field radiation patterns produced by a series of four (P =1, 2, 3, and 4) fully populated hexagonal arrays 
generated with the expansion factor 2=δ . 
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These plots indicate that a further reduction in side-lobe 
levels may be achieved by including a central element in 
the generating subarray of Fig. 1. 

3.  Conclusion  

The research in the area of fractal antenna has recently 
yielded a rich class of new designs for antenna elements 
as well as arrays. 

The essential property of hexagonal arrays have 
some elements missing, i. e., they are thinning. This is a 
potential advantage of these arrays from the design point 
of view, since they may be realized with fewer elements. 
Another property of these arrays is that they possess low 
side-lobe levels at 2/πϕ = . Finally, it should be noted 
that the compact product form of the array factor can be 
obtained for some particular cases. This offers a 
significant advantage in terms of computational  
 

efficiency, especially for large arrays, and may be 
exploited to develop rapid beam-forming algorithms.  
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