Semiconductor Physics, Quantum Electronics and Optoelectronics, 9 (4) P. 012-016 (2006).


References

1. H. Sakaki, Scattering suppression and high-mobility effect of size-quantized electrons in ultrafine semiconductorwire structures // Jpn J. Appl. Phys. 19(12), p. L735-l739 (1980).
https://doi.org/10.1143/JJAP.19.L735
2. V.K. Arora, Size-dependent electric conductivity in semiconducting thin wires // Phys. status solidi (b) 105, p. 707-713 (1981).
https://doi.org/10.1002/pssb.2221050232
3. J. Lee and M.O. Vassel, Low-field electron transport in quasi-one-dimensional semiconducting structures // J. Phys. C: Solid State Phys. 17, p. 2525-2535 (1984).
https://doi.org/10.1088/0022-3719/17/14/010
4. G. Fishman, Phonon-limited mobility in a quasi-one-dimensional semiconductor // Phys. Rev. B 36(14), p. 7448-7455 (1987).
https://doi.org/10.1103/PhysRevB.36.7448
5. C.C. Wu and C.J. Lin, Impurity-limited mobility of semiconducting thin wires in n-type gallium arsenide // J. Appl. Phys. 83(3), p. 1390-1395 (1988).
https://doi.org/10.1063/1.366842
6. G.B. Ibragimov, Alloy scattering in quantum well wire structures of semiconductor ternaries // Semiconductor Physics, Quantum Electronics & Optoelectronics 5, p. 347-352 (2002).
7. S. Kundu, C.K. Sakar and P.K. Basu, Low-field mobility and thermopower in one-dimensional electron gas // J. Appl. Phys. 68(3), p. 1070-1074 (1990).
https://doi.org/10.1063/1.346746
8. J.W. Brown and H.N. Spector, Impurity scattering limited momentum relaxation time in a quantum well wire // J. Vac. Sci. Technol. B 4(2), p. 453-458 (1986).
https://doi.org/10.1116/1.583403
9. H.Y. Fan, W. Spitzer and R.J. Colins, Infrared absorption in n-type germanium // Phys. Rev. 101,p. 566-572 (1956).
https://doi.org/10.1103/PhysRev.101.566
10. J.S. Park, R.P.G. Karunasiri and K.L. Wang, Normal incidence infrared detector using p-type SiGe/Si multiple quantum wells // Appl. Phys. Lett. 60, p. 103-105 (1992).
https://doi.org/10.1063/1.107361
11. C.Y. Tsai, C.H. Chen, T.L. Sung, T.Y. Wu and F.P. Shih, Theoretical model for intravalley and intervalley free-carrier absorption in semiconductor lasers: Beyond the classical Drude model // IEEE J. Quantum Electron. 34, p. 552-558 (1998).
https://doi.org/10.1109/3.661466
12. C.C. Wu, C.J. Lin, Free-carrier absorption in heavily doped quasi-two-dimensional semicon-ducting structures // Phys. Low-dim. Struct.1/2,p. 281-286 (1998).
13. C. Lee, Intersubband absorption in conduction bands of silicon and germanium wells. Ph.D. dissertation, University of California, Los Angeles (1994).
14. S. Murata, A. Tomita and A. Suziki, Influence of free carrier plasma effect on carrier - induced refractive index change for quantum-well lasers // IEEE Photon. Technol. Lett. 5,p. 16-19 (1993).
https://doi.org/10.1109/68.185046
15. L.F. Tiemeijer, P.J.A. Thijs, J.J.M. Binsma, and T.V. Dongen, Effect of the free carriers on the line with enhancement factor of InGaAs/InP (strained-layer) multiple quantum well lasers // Appl. Phys. Lett. 60, p. 2466-2468 (1992).
https://doi.org/10.1063/1.106935
16. L.J. Olafsen, E.H. Aifer, I. Vurgaftman, W.W. Benley, C.L. Felix, D. Zhang, C.H. Lin and S.S. Pei, Near-room temperature mid-infrared interband cascade laser // Ibid. 72, p. 2370 (1998).
https://doi.org/10.1063/1.121359
17. W.W. Bewley, E.H. Aifer, C.L. Felix, I. Vurgaftman, J.R. Meyer, C. H. Lin, S.J. Murry, D. Zhang and S.S. Pei // Ibid. 71,p. 3607 (1997).
https://doi.org/10.1063/1.120455
18. S.S. Kubakaddi and B.G. Mulimani, Free carrier absorption in semiconducting quantum well wires // J. Phys. C: State Phys. 18, p. 6647-6652 (1985).
https://doi.org/10.1088/0022-3719/18/36/019
19. H. Adamska and N. Spector, Free-carrier absorption from electrons in confined systems // J. Appl. Phys.59, p. 619-626 (1986).
https://doi.org/10.1063/1.336621
20. Wu Chhi-Chong, Lin Chau-Jy, Effect of electron-phonon scattering mechanisms on free-carrier absorption in quasi-one-dimensional structures // Physica B 316-317, p. 346-349 (2002).
https://doi.org/10.1016/S0921-4526(02)00504-5
21. G.B. Ibragimov, Theory of the free-carrier absorp-tion in quantum wires with boundary roughness scattering // Semiconductor Physics, Quantum Electronics & Optoelectronics 6,p. 9-13 (2003).
https://doi.org/10.1088/0953-8984/15/9/306
22. G.B. Ibragimov Free-carrier absorption in semiconducting quantum well wire for alloy-disorder scattering // J. Phys.: Condens. Matter 14, p. 8145-8152 (2002).
https://doi.org/10.1088/0953-8984/14/34/332
23. K.W. Kim, M.A. Stroscio, A Bhatt, R Mickevicius and V.V. Mitin, Electron-optical-phonon scattering rates in a rectangular semiconductor quantum wire // J. Appl. Phys. 70,p.319-327 (1991).
https://doi.org/10.1063/1.350275
24. K Chang, R.Z. Wang, B.K. Ma, The effect of transverse electric field on the electro-optical-phonon scattering rates in quantum wires // Physica B 229, p.347-353 (1996).
https://doi.org/10.1016/S0921-4526(96)00493-0
25. R. Mickevicius, V. Mitin, G. Paulavicius, V. Kochelap, M.A. Stroscio and G.J. Iafrate, Hot-phonon effects on electron transport in quantum wires // J. Appl.Phys. 80, p. 5145-5149 (1996).
https://doi.org/10.1063/1.363496
26. C.R. Bennett, N.C. Constantinou, M. Babiker and B.K. Ridley, The interaction of electrons with optical phonons in embedded circular and elliptical GaAs quantum wires // J. Phys.: Condens. Matter 7, p. 9819-9832 (1995).
https://doi.org/10.1088/0953-8984/7/50/016
27. J. Pozela, K. Pozela, and V. Jucine, Electron mobility and electron scattering by polar optical phonons in heterostructure quantum wire // Fizika, tekhnikapoluprovod. 34, p. 1053-1057 (2000) (in Russian).
https://doi.org/10.1134/1.1309408