Semiconductor Physics, Quantum Electronics and Optoelectronics, 9 (4) P. 021-025 (2006).


References

1. T. Takahashi, S. Suzuki, T. Morikawa, H. Katayama-Yoshida, S. Hasegawa, H. Inokuchi, K. Seki, K. Kikuchi, S. Suzuki, I. Ikemoto, Y. Achiba, Pseudo-gap at the Fermi level in K3C60 observed by photoemission and inverse photoemission // Phys. Rev. Lett. 68(8), p.1232-1235 (1992).
https://doi.org/10.1103/PhysRevLett.68.1232
2. S. Saito, A. Oshiyama, Cohesive mechanism and energy bands of solid C60 // Phys. Rev. Lett. 66, p. 2637-2640 (1991).
https://doi.org/10.1103/PhysRevLett.66.2637
3. J.H. Weaver, J.L. Martins, T. Komeda, Y. Chen, T.R. Ohno, G.H. Kroll, N.Troullier, R.E. Haufler, R.E. Smalley, Electronic structure of solid C60 : experiment and theory // Phys. Rev. Lett.66 (13), p.1741-1744 (1991).
https://doi.org/10.1103/PhysRevLett.66.1741
4. A. Skumanich, Optical absorption spectra of carbon 60 thin films from 0.4 to 6.2 eV // Chem. Phys. Lett.182(5), p. 486-490 (1991).
https://doi.org/10.1016/0009-2614(91)90112-M
5. H. Imahori, Y. Mori, Y. Matano, Nanostructured artificial photosynthesis // J. Photochem. Photobiol.C 4, p. 51-83 (2003).
https://doi.org/10.1016/S1389-5567(03)00004-2
6. K. Pichler, S. Graham, O.M. Gelsen, R.H. Friend, W. J. Romanow, J.P. McCauley, N. Coustel, J.E. Fischer, A.B. Smith, Photophysical properties of solid films of fullerene, C60 // J. Phys.: Condens. Matter.3(47), p. 9259-9270 (1991).
https://doi.org/10.1088/0953-8984/3/47/001
7. H. Hoppe, N. Arnold, D. Meissner, N.S. Sariciftci, Modeling of optical absorption in conjugated polymer/fullerene bulk-heterojunction plastic solar cells // Thin Solid Films 451-452, p. 589-592 (2004).
https://doi.org/10.1016/j.tsf.2003.11.173
8. I. Riedel, V. Dyakonov, Influence of electronic transport properties of polymer-fullerene blends on the performance of bulk heterojunction photovoltaic devices // Phys. status solidi (a)201(6), p. 1332-1341 (2004).
https://doi.org/10.1002/pssa.200404333
9. P.R. Somani, S. Radhakrishnon, Electrochromic materials and devices: present and future // Mater. Chem. Phys. 77(1), p. 117-133 (2003).
https://doi.org/10.1016/S0254-0584(01)00575-2
10. S. Margadonna, K. Prassides, Recent advances in fullerene superconductivity // J. Solid State Chem.168(2), p. 639-652 (2002).
https://doi.org/10.1006/jssc.2002.9762
11. P. Byszewski, E. Kowalska, M. Popіawska, M. Јuczak, Z. Klusek, Molecules for information storage // J. Mag. Mag. Mat. 249, p. 486 (2002).
https://doi.org/10.1016/S0304-8853(02)00475-4
12. C.C. Wang, Z.X. Guo, S.K. Fu, W. Wu, D.B. Zhu, Polymers containing fullerene or carbon nanotube structures // Progr. Polym. Sci.29, p. 1079-1141 (2004).
https://doi.org/10.1016/j.progpolymsci.2004.08.001
13. W.N. Sisk, D.H. Kang, M.Y.A. Raja and F. Farahi, Photocurrent and optical limiting studies of C60 films and solutions // Intern. J. Optoelectronics 11, p. 325 (1997).
14. St. Kanev, Z. Nenova, N. Koprinarov, K. Ivanova, Conductivity and photoconductivity peculiarities observed in C60 layers // Semiconductor Physics, Quantum Electronics and Optoelectronics 9(4), p. 17-20 (2007).
https://doi.org/10.15407/spqeo9.04.017
15. St. Kanev, Z. Nenova, K. Ivanova, S. Koynov, Characterization of a-Si:H films via analysis of multiple photocurrent spectra // Sol. Energy Mater. Sol. Cells 36, p. 277-287 (1995).
https://doi.org/10.1016/0927-0248(94)00179-0
16. M. Vanecek, J. Kocka, J. Stuchlik, A. Triska, Direct measurement of the gap states and band tail absorption by constant photocurrent method in amorphous silicon // Solid State Communs 39, (11), p. 1199-1202 (1981).
https://doi.org/10.1016/0038-1098(81)91113-3