Semiconductor Physics, Quantum Electronics and Optoelectronics, 9 (4) P. 007-011 (2006).
References
1. S.K. Jeng, Near-field scattering by physical theory of diffraction and shooting and bouncing rays // IEEE Trans. Ant. Propag. 46(4), p. 551-558 (1998). https://doi.org/10.1109/8.664120 | | 2. N.N. Youssef, Radar cross section of complex targets // Proc. IEEE 77(5), p. 722-734 (1989). https://doi.org/10.1109/5.32062 | | 3. D. Colton and R. Kress, Integral equation methods in scattering theory. Wiley-Interscience, 1983. | | 4. R.G. Kouyoumjian and P.H. Pathak, A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface // Proc. IEEE, 62(11), p. 1448-1461 (1974). https://doi.org/10.1109/PROC.1974.9651 | | 5. S.M. Rao, D.R. Wilton, and A.W. Glisson, Electromagnetic scattering by surfaces of arbitrary shape // IEEE Trans. Ant. Propag.AP-30(3), p. 409-418 (1982). https://doi.org/10.1109/TAP.1982.1142818 | | 6. E.F. Knott, J.F. Shaeffer and M.T Tuley, Radar cross section: Its prediction, measurement and reduction. Artech House, Dedham, MA, 1985. | | 7. S. Blume and V. Krebs, Numerical evaluation of dyadic diffraction coefficients and bistatic radar cross sections for a perfectly conducting semi-infinite elliptic cone // IEEE Trans. Ant. Propag. 46(3), p. 414- 424 (1998). https://doi.org/10.1109/8.662661 | | 8. C.A. Balanis, Antenna theory: Analysis and design. John Wiley & Sons, 2nd edition, New York, 1997. | | 9. R.A Ross, Radar cross section of rectangular flat plate as function of aspect angle // IEEE Trans. Ant. Propag.AP-14, p. 329-335 (1966). https://doi.org/10.1109/TAP.1966.1138696 | |
|
|