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1. Introduction 

Optical properties of quasi-zero-dimensional semicon-
ductor structures, consisting of the semiconductor QDs 
of the spherical shape with radii nm10...1≈a , grown in 
transparent dielectric media have been intensively 
studied recently [1-5]. Such heterostructures attract 
attention owing to their nonlinear optical properties and 
the prospects of their application in optoelectronics and 
quantum electronics, in particular, as novel materials 
perspective for the creation of elements which control 
optical signals in semiconductor injection lasers [1, 2] 
and in optical bistable elements and transistors [2]. 

Since the energy gap in a semiconductor QD is 
essentially narrower than that in semiconductor 
(dielectric) matrices, the motion of charge carriers is 
confined to the QD volume in all three directions, i.e., 
charge carriers move in a three-dimensional spherical 
potential well. As a result, both an electron and a hole as 
well as an exciton have no quasi-momenta in a QD. 
Therefore, it is possible to speak only about quasi-
particle states in a QD. Below, as regards to excitons in a 
QD, we understand such an exciton state that has no 
quasi-momentum. 

Optical and electrooptical properties of similar 
heterophase systems are determined to a great extent by 
the energy spectrum of a spatially-bounded electron-hole 
pair (the exciton) [1-5]. The energy spectrum of the 
charge carriers in a QD will be completely discrete for 
the QD dimension a smaller than that of the order of the 
Bohr radii of an electron ea  and a hole ha  [6-8]. Under 

these conditions, the influence of the interface between 
the QD and the dielectric matrix can cause the 
dimensional quantization of the electron and hole energy 
spectra in the QD, which is related to both the mere 
spatial confinement of a quantization region [4, 5, 9] and 
the polarization interaction of charge carriers with the 
QD surface [3, 6-14]. 

The theory of exciton states in quasi-zero-
dimensional structures has not yet been sufficiently 
developed so far. To fill this gap, the contributions to the 
exciton energy spectrum, made by the electron and hole 
kinetic energies and the Coulomb interaction energies 
between them, as well as the energy of their polarization 
interaction with the spherical interface between the QD 
and the dielectric medium, have been analyzed in this 
paper. In addition, the limit transition from the energy 
spectrum of the exciton in the QD to that of the exciton 
in the unlimited bulk has been traced. 

The exciton, the structure (the effective mass, Bohr 
radius, and bond energy) of which in the QD does not 
differ from that in an infinite semiconductor, will be 
called as the "bulk" exciton. 

2. Exciton energy spectrum in a quasi-zero-
dimensional system 

Following papers [3, 6-14], let us consider a simple 
model of the quasi-zero-dimensional system: a neutral 
spherical semiconductor QD of the radius a  and 
dielectric permittivity (DP) 2ε  imbedded into a 
dielectric matrix with DP 1ε . In the bulk of such a QD, 
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moving are an electron e and a hole h with effective 
masses em  and hm , respectively. The variables er  and 

hr  denote the distances of the electron and the hole, 
respectively, from the center of the QD. The electron 
and hole bands are supposed parabolic. The typical 
dimensions of the problem are the quantities a, ea , ha , 
and exa , where 

( )22
2 / ema ee hε= , ( )22

2 / ema hh hε= ,  

( )22
2ex / ea με h=  (1) 

are the Bohr radii of the electron, hole, and exciton, 
respectively, in an infinite semiconductor with DP ε2; e  
is the electron charge; and ( )( )hehe mmmm += /μ  is 
the reduced effective mass of the exciton. The 
circumstance that all the typical dimensions of the 
problem are considerably larger than the interatomic 
distance a0: 

a , ea , ha , 0ex aa >> , (2) 

allows us to consider the motions of the electron and the 
hole in the QD in the effective mass approximation. 

In the model concerned, the Hamiltonian of the 
exciton in the QD, in the framework of the 
approximations stated above, looks like [10-14] 

( ) ( ),,,,
22

22

arrUrrVE
mm

H

heheehg

h
h

e
e

+++

+Δ−Δ−=
hh

 (3) 

where the first two terms define the kinetic energies of 
the electron and the hole, and gE  is the energy gap 

width in an unconfmed semiconductor with DP 2ε . In 
Eq. (3), the energy of the electron-hole Coulomb 
interaction ( )heeh rrV ,  is defined as 

( )
eh

heeh rr
errV
−

−=
2

2
,

ε
  (4) 

Provided that 21 εε >> , the polarization interaction 
energy ( )arrU he ,,  in Eq. (3) can be written down as an 
algebraic sum of the energies of the hole and electron 
interactions with their own images, ( )arV hhh ,′  and 

( )arV eee ,′ , respectively, and with the images of 
“foreign” quasi-particle ( )arrV hehe ,, rr

′  = ( )arrV heeh ,, rr
′  

[10-14]: 
( ) ( ) ( )

( ) ( ),,,,,
,,,,

arrVarrV
arVarVarrU

heehhehe

eeehhhhe
rrrr

rr

′′

′′

++
++=

 (5) 

where 

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

−
=′

1

2
22

2

2

2

2
,

ε
ε

ε h
hhh ra

a
a

earV , (6) 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
=′

1

2
22

2

2

2

2
,

ε
ε

ε e
eee ra

a
a

earV , (7) 

( )[ ] 2
1

222

2

cos2/2 arrarr

a
a

eVV
hehe

ehhe
+Θ−

⋅−== ′′ ε
, 

he rr rr ,∠=Θ  .                                                               (8) 
Although, in our model of the quasi-zero-

dimensional system, the electron and the hole do not go 
beyond the space of the semiconductor QD, the potential 
energy of their interaction with the spherical interface of 
two media ( )arrU he ,,  (5) depends not only on the DP 

2ε  of the QD, but also on the DP 1ε  of the matrix, into 
which the QD is imbedded [3, 10-14]. Such a 
dependence is connected to the penetration of the 
electrostatic field created by the electron and the hole 
beyond the boundaries of the QD. 

In our papers [10-14], when considering 
Hamiltonian (3) of the exciton in the QD, the 
polarization interaction (5) of charge carriers with the 
surface charge induced by them at the spherical interface 
"QD-dielectric matrix" was taken into account for the 
first time. Later on, such a polarization interaction was 
taken into account when calculating the exciton [3, 10] 
and biexciton [9] energy spectra in the QD. 

On the basis of papers [10-14], we will obtain the 
energy spectrum of an exciton in a QD making use of 
the approximation, where the QD is an infinitely deep 
spherical potential well for an electron and a hole that 
move inside its space. The radius a of the QD is taken as 
confined within the limits 

exaaaa eh ≈≤<< .  (9)  

Then, the polarization interaction (5) plays a 
dominating role in the potential energy of Hamiltonian 
(3). Provided that condition (9) holds true, we use the 
adiabatic approximation, supposing the kinetic energy of 
an electron to have the largest value and considering the 
last two terms in Hamiltonian (3), as well as the operator 
of nonadiabaticity, in the framework of the perturbation 
theory. 

Confining ourselves to the first order of the 
perturbation theory, we obtain the following expression 
for the exciton energy spectrum ( )SE hhh

eee

mln
mln

0,,
0,0,

=
==  in the 

state ( )0,,;0,0, === hhheee mlnmln  in the QD 
with the radius S  [3, 10-14]: 

( ) ( ) ( ) ( )SSVSTESE hh
eelen

hh
e

ln
nee

e
g

ln
n

0,,
0,0,

0,,
0,0, 0,

λ+++= ′=
,  

(10) 
where 

( )ST e
ne 0, ( ) 2

22

0,
π
S

n
SE ee

ne
==  (11) 

is the kinetic energy of the electron in the infinitely deep 
spherical well, ( )SV ee ′  is the average value of the 
interaction energy of the electron with its own image 
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calculated using the wave functions of the electron in the 
infinitely deep spherical well of the QD, 

( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛ ++=

2
3,0,

0,0, he
nt

n tnS
S

P
S eh

e
ωλ  (12) 

is the oscillator-type hole spectrum, 

( ) ( )( )
( ) ( )( ),0,0,0,0,

0,0,0,

SVSV

SVSV
S

P

ee

ee

n
eh

n
he

n
ehhh

n

′′

′

++

+
′

+=
 (13) 

( ) 2/3
2/12/1

22π
3
212, −
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⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ += S

m
m

nnS
h

e
eeω  (14) 

is the frequency of oscillations of the hole, 
K,2,1,02 =+= hrh lnt

h
 is the main quantum number 

of the hole, and K,2,1,0=
hrn   is the radial quantum 

numbers of the hole. Provided that the hole energy 
spectrum ( )Sh

e
t
n 0,0,λ  (12) can be described by the 

spectrum of a three-dimensional harmonic oscillator, the 
requirement 

2/1
22

2/1
2/1

π
3
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2/3

⎟
⎠
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⎜
⎝
⎛ +
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e

h

h

e

n

t
m
m

S  (15) 

must be fulfilled [10-14]. 
Let us write down the expressions for the average 

values of the energy of the electron interaction with its 
own image [10-14] 

( )
S

Z
SV ee nn

ee
0,0,0, =′ ,  

( )
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−
+= ∫

1

0
2

2

1

2
0,

1
πsin

2
x

xndx
Z e

ne ε
ε

, (16) 

the energy of the hole interaction with its own image 

( ) ( )
S

SV hh
12 /1 εε+

=′ , (17) 

the energies of the electron and hole interactions with 
the images of "foreign" quasi-particle 

( ) ( )
S

SVSV ee n
eh

n
he

20,0,0,0, −=+ ′′ , (18) 

and the electron-hole Coulomb interaction energy 

( )( ) ( ) ( )[ ]ee
n

eh nn
S
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( ) ( )( ) ( )
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2
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⎟
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⎛ ++−+−=
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′
=

heee

he
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eh

tnSnn
S

tnSSVSV ehe

ωγ

ω
 

(19) 

where ( )γCi  is the cosine-integral function, 
K577.0=γ  is the Euler constant. 

It should be noted that the formulae (12)-(19) were 
obtained by averaging the corresponding expressions 
(4), (6)-(8) using the wave functions of the infinitely 
deep spherical well of a QD [3, 10-14]. 

The polarization interaction energy (5), averaged 
using the electron wave functions in the infinitely deep 
spherical well, looks like 

( ) ( ) ( )
( ) ( )( )=++

++=

′′

′′

SVSV

SVSVSU

ee

ee

n
eh

n
he

n
eehh

n

0,0,0,0,

0,0,0,0,
pol  

.
1)/( 120,

S

Z
en −+

=
εε

 (20) 

Hereafter, the energy is measured in terms of 
( )22 2/Ry eee amh= , and the dimensionless variables 

( )arx h /=  and ( )eaaS /=  are used. 
Taking into account Eqs (12), (13) and (19), (20), 

we write down the expression (10) for the exciton 
spectrum ( )SE h

e

t
n 0,0,  in the state ( )he tn ;0,0,  in the 

QDs, the radii S of which satisfy conditions (9) and (15) 
simultaneously, as follows: 

( ) ( )

( )
( )

( )
( )

.

~

1
0,

;0,0,

0,

0,0,
pol

0,0,0,

⎥
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⎥
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⎢
⎢
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⎡
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e
n

tn
eh

e
n

n

e
ng

t
n

e

he

e

e

e
h
e

 (21) 

It should be pointed out that the exciton spectrum 
(21) was obtained in the framework of the adiabatic 
approximation, where the kinetic energy of the electron 

( )ST e
ne 0,  (11) was supposed to give the main 

contribution to the energy spectrum of the exciton in the 
QD. Therefore, formula (21) for the exciton energy 
spectrum ( )SE h

e

t
n 0,0,  allows one to trace the 

contributions, given to the exciton spectrum by the 
electron-hole Coulomb interaction (19) and the 
polarization interaction (20) and to compare them with 
the contribution of the electron kinetic energy (11). 

The obtained exciton spectrum (21) can be applied 
only to weakly excited exciton states ( )he tn ;0,0, , for 
which the inequality 

( ) ( )SVESE g
t
n
h
e

Δ<<−0,0,  , 

where ( )SVΔ  is the depth of the potential well for 
electrons in the QD holds true (for example, in a CdS 
QD with dimensions obeying condition (9), the value of 

VΔ  is eV5.2...3.2  [15]). 
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In [14], the spectrum of an exciton in a QD of the 
radius a for a simple model of the quasi-zero-
dimensional system, where the Hamiltonian of the 
exciton H  is given by the formula (3), was found using 
the variational method and not being restricted to the 
framework of the adiabatic approximation. Moreover, 
the radius a of the QD, contrary to [3, 10-14], was not 
bounded by condition (9). The results of variational 
calculations of the energy spectrum for the exciton 

( )aE0  in the QD of the radius a are shown in the figure. 
The relevant calculation parameters in the work [14] 
corresponded to experimental conditions in the 
works [4, 5, 15, 16]. 

3. Contributions of kinetic, polarization, and 
Coulomb energies to the spectra of excitons  
in quantum dots 

In papers [4, 16], the peaks of interband absorption in 
spherical QDs with the radius a within the interval of 

nm30...2.1 , which were made of CdS with DP 3.92 =ε  
and dispersed in a transparent matrix of silicate glass 
with DP 25.21 =ε  [4], were observed. The effective 
masses of the electron and hole and the reduced mass of 
the exciton μ in CdS were ( ) 205.0/ 0 =mme , 
( ) 5/ 0 =mmh , and ( ) 197.0/ 0 =mμ , respectively [16]. 
In particular, the dependence of the positions of the 
adsorption band of QDs caused by interband transitions 
onto the dimensional quantization levels 
( )0,1 == ee ln , ( )1,1 == ee ln , and ( )2,1 == ee ln  of 
the electron in the conduction band on the QD radius a 
was experimentally determined [4, 16]. 

As was shown in [3, 10-14], the formula (21) 
describes the exciton spectrum ( )SE ht

0,0,1  (5) as a 
function of the QD radius S with sufficient accuracy 
under the reported conditions of experiments in the CdS 
[4, 16]. The parameters of the exciton spectrum 

( )SE ht
0,0,1  (21) under the experimental conditions [4, 

16] for the CdS QDs with the radius nm0.3...5.1=a  are 
listed in Table 1. 

According to the formulae (11), (19), and (20), the 
ratios between the polarization interaction energy and 
electron kinetic energy ( ) ( )( )STSU e

0,1
0,0,1

pol / as well as 
between the Coulomb interaction energy and electron 

kinetic energy ( ) ( )⎟
⎠
⎞⎜

⎝
⎛ STSV e

eh 0,1
0,0,1 /

~
 are proportional to 

S  and 2/1S , respectively. Such a behavior of the ratios 

( ) ( )( )STSU e
0,1pol / (20) and ( ) ( )⎟

⎠
⎞⎜

⎝
⎛ STSV eth

0,1
;0,0,1 /

~
 

(19) is also confirmed by numerical data in Table 1. 
From Table 1, it follows that the polarization 

interaction energy ( )SU 1,0,0
pol  (20) makes the dominating 

contribution to the exciton energy spectrum (21), 

whereas the Coulomb interaction energy ( )SV ht
eh

;0,0,1~
 

(19) makes a small negative one. Namely, the ratio 
( ) ( )( )STSU e

0,1
1,0,0
pol / varies from 55.8 % at nm5.1=a  

to 112 % at nm3=a , whereas the absolute value of the 

ratio ( ) ( )⎟
⎠
⎞⎜

⎝
⎛ STSV et

eh
h

0,1
;0,0,1 /

~
 from 8.5 % at nm5.1=a  

to 30 % at nm3=a . The data presented in Table 1 are 
also confirmed by the results of variational calculations 
of the spectrum E0(a) of the exciton in the QD of the 
radius ex3aa ≤ , which were obtained in the work [14] 
under the experimental conditions of the works [4, 16] 
and beyond the adiabatic approximation. 

The main contributions to the polarization 
interaction energy ( )SU 0,0,1

pol  (20) are made by the 

interaction energies of the electron ( )SV ee
0,0,1

′  (16) 

(64.5 %) and the hole ( )SV hh
0,0,1

′  (17) (58.2 %) with their 
own images, whereas the interaction energy of the 
electron and hole with the images of "others" 

( ) ( )( )SVSV ehhe
0,0,10,0,1

′′ +  (18) gives a negative 
contribution, the absolute value of which is 22.7 % (see 
Table 2). It is essential that those contributions do not 
depend on the QD radius S .  

 
 

Table 1. Contributions to the exciton spectrum ( )aE ht
0,0,1  

(10) and (21) made by the electron-hole Coulomb, 

( )aV ht
eh

;0,0,1~
 (19), and polarization, ( )aU 1,0,0

pol  (20), 

interaction energies in relation to the contribution of the 
electron kinetic energy ( )aT e

0,1  (11). 
 

( )
( )S

a nm ( )
( )e

e ST

Ry
0,1

ht
( )

( )
( )%

~

0,1

;0,0,1

ST

SV
e

t
eh

h

 
( )
( )

( )%
0,1

1,0,0
pol

ST

SU
e  ( )[

]( )eg

t

E

SE h

Ry
0,0,1

−

−  

0 17.4 55.8 35.08 1.5 
(0.624) 25.35 

1 8.5  37.34 

0 25.6 74..4 21.21 2.0 
(0.83) 14.26 

1 15.3  22.68 

0 34.0 93.0 14.51 2.5 
(1.04) 9.13 

1 22.5  15.56 
0 42.6 111.5 10.71 3.0 

(1.25) 6.34 
1 30.0  11.51 

 

Note. The ratio ( ) ( )aTaV et
eh

h
0,1

;0,0,1 /
~

 is negative. The data are 

listed for the CdS QDs with the radii ( ) nm0.3...5.1=a  under 

the conditions of experiments in [4, 16]. eV1068.7Ry 1−⋅=e . 
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Table 2. Contributions to the polarization interaction energy ( )aU 1,0,0
pol  (20) made by the interaction of the electron with 

its own image, ( )aV ee
0,0,1

′  (16), by the interaction of the hole with its own image, ( )aV hh
0,0,1

′  (17), and by the interactions of 

the electron and the hole with the hole and electron images, respectively, ( ) ( )aVaV ehhe
0,0,10,0,1

′′ +  (18), as well as the ratio 

( ) ( )aUaV ht
eh

0,0,1
pol

;0,0,1 /
~

 between the Coulomb and polarization interaction energies (19) and (20).  

( )
( )S

a nm
 

( )
( )e

SU

Ry

1,0,0
pol  

( )
( )

( )%

1,0,0
pol

0,0,1

SU
SV ee ′

 
( )
( )

( )%

1,0,0
pol

0,0,1

SU
SV hh ′

 
( ) ( )

( )
( )%

0,0,1
pol

0,0,10,0,1

SU

SVSV ehhe ′′ +

 ht  
( )

( )
( )%

~

1,0,0
pol

;0,0,1

SU

SV ht
eh

 

0  31.2 1.5 
(0.624) 14.14 64.5 58.2  22.7 

1  15.2 
0  34.4 2.0  

(0.83) 10.61 64.5 58.2  22.7 
1  20.5 
0  36.6 2.5 

(1.04) 8.49 64.5 58.2  22.7 1  24.2 
0  38.2 3.0 

(1.25) 7.07 64.5 58.2  22.7 1  26.9 

Note. The ratios ( ) ( )( ) ( )( )SUSVSV ehhe
1,0,0
pol

0,0,10,0,1 /′′ +  and ( ) ( )⎟
⎠
⎞⎜

⎝
⎛ SUSV ht

eh
1,0,0
pol

;0,0,1 /
~

 are negative. The data are listed for the CdS QDs 

with radii nm0.3...5.1=a  under the conditions of experiments in [4, 16]. 

The Coulomb interaction energy ( )SV ht
eh

;0,0,1~
 (19) 

makes a considerably smaller contribution to the excilon 
spectrum (10) and (21) in comparison with the 
polarisation interaction energy ( )SU 0,0,1

pol  (20). The ratio 

of these energies ( ( ) ( ))SUSV ht
eh

1,0,0
pol

;0,0,1 /
~

 becomes 

negative (its absolute value changes from 31 and 15 % at 
nm5.1=a  to 38 and 27 % at nm3=a  for 0=ht  and 

1, respectively (see Table 2). 
The experimental exciton spectrum was stated in 

papers [4, 16] to be described with sufficient accuracy by 
the kinetic energy of the electron in the QD ( )aT e

0,1  (11) as 
the radius a  of the CdS QD increases above 2.0 nm. 
Actually, as follows from Table 1, the ratio 

( ) ( ) ( )⎟
⎠
⎞

⎜
⎝
⎛ + STSVSU et

eh
h

0,1
;0,0,11,0,0

pol /
~

 of the sum of the 

polarization and Coulomb interaction energies to the kinetic 
energy of the electron comprises a significant value of 
(0.49–0.69). Even for the QD with the smallest experi-
mentally allowable radius a = 1.5 nm, such a ratio amounts 
to a substantial value of about 38 % (see the figure). 

4. Emergence of the bulk exciton  
in a quasi-zero-dimensional system 

For the QD with a small radius exaa << , the main 
contribution to the exciton spectrum (21) is given by the 
electron kinetic energy ( )ST e

ln ee ,  (11), whereas the 

contributions of the terms ( )SU en 0,0,
pol  (5) and 

( )SV he tn
eh

;0,0,~
 are small [7-14]:  

( ) ( ) 1/ ,
,0,0n

pol
e <<STSU e

ln ee
, 

( ) ( ) 1/
~

,
;0,0, <<STSV e

ln
tn

eh ee
he  . 

 

 
The exciton energy spectra ( )SE 0

0,0,1  as functions of the 
nanocrystal dimension S = a/aex: 1 – the experimental exciton 
spectrum [4, 16], 2 – the exciton spectrum ( )aE0  obtained by 
the variational method [14], 3 – the kinetic energy of the 
electron ( )ST e

0,1  (11).  



 
Semiconductor Physics, Quantum Electronics & Optoelectronics, 2006. V. 9, N 4. P. 1-6. 

 

 

© 2006, V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine 
 

6 

For the QD with a large radius exaa >> , the 
exciton is quantized as a whole, and its energy spectrum 
is determined as [9] 

( ) 2
2

2
ex 2 nlgnl aM
ΕΕaΕ ϕh

+−= ,  

exE = 2
ex

2

ex μ2
Ry

a
h

−=− ,  (22) 

where M  is the translational mass of the exciton, and 
nlϕ  are the roots of the Bessel function ( )ϕ

2
1

+l
J . 

In paper [17], an expression for the exciton 
spectrum was obtained by the variational method in the 
framework of the effective mass approximation but 
without regard for the polarization interaction energies 
of an electron and a hole with the surface of the QD, 
which made it possible to trace the limit transition to the 
spectrum of the bulk exciton (22), starting from the QD 
radius 80

exex ≥> SS . 
The spectrum of the exciton in the CdS QD, which 

was found by us in the paper [14] by the variational 
method in the framework of the effective mass 
approximation by taking into account the polarization 
interaction energy, turns into the spectrum of the bulk 
exciton (22) at 44.9~0

exex ≥> SS  under the experimental 
conditions of the works [4, 5, 16]. In this case, the value 
of 0

ex
~S  differs from that of 0

exS  by no more than 18 %. 
Such a difference is connected to the fact that the account 
of the polarization interaction energy (it has not been done 
in the paper [4]) results in the exciton energy growth 
proportional to 1−S . In addition, the values of the QD 
radii 0

exS  and 0
ex

~S , can be overestimated to a certain 
extent, because the variational calculations of the exciton 
spectrum yield the overestimated values of the energy. 

5. Conclusions 

Here, in the framework of the simple model of a quasi-
zero-dimensional system, we have shown that, even for 
the QDs with the smallest experimentally allowable 
radii, the kinetic energy of the electron (11) makes a 
contribution to the exciton spectrum ( )aE h

e

t
n 0,0,  (10) 

and (21) that is comparable by the order of magnitude 
with the contributions made to this spectrum by the 
polarization, ( )aU ,0,0n

pol
e  (20), and Coulomb, 

( )aV he tn
eh

,0,0,~
 (19), interaction energies. In this 

connection, a description of the exciton spectrum in QDs 
with radii exaa <  using only the expression for the 

electron kinetic energy ( )aT e
nl  (11), as it has been done 

in works [4, 5, 16], is not justified. 
In the least studied case where the QD radius a is 

comparable by its value with the Bohr radius of the 

exciton, we showed [10-14] that the exciton spectrum 
( )aE h

e
t
n 0,0,  (10) and (21) can be described by the 

complicated dependence 

( )aE h
e

t
n 0,0, = ( )1122/31 ,,,, −−−−−

he mmaaaf  

(see the figure). In this case, the effective masses of the 
electron em  and the exciton μ  are the functions of the 
QD radius a [12-14]. 
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