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Abstract. The electric polarizability « of ionized-donor-bound exciton D*X in bulk
semiconductor is calculated for al values of the effective electron-to-hole mass ratio o
included in the range of stability (o<o,). The caculation is performed within the
variational method by using 56-term wave function. An asymptotic behavior of « inthe
vicinity of the critical value o is deduced. We have aso calculated the limiting value o
for which the polarizability equals that of D™ system.
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1. Introduction

The existence of ionized-donor-bound exciton in
semiconductors was first predicted by Lampert [1] and
confirmed later by experimental works [2-4]. For direct
gap semiconductors with isotropic bands, the calculation
of the ground state energy of such a complex is reduced
in the effective mass approximation, to solve the
Hamiltonian of three bodies system formed by one
electron-hole pair (g,h) trapped by one donor centre D*.
This system is labelled D*X. It is clear that when the

energy ED*X is less than the neutral donor energy

EDO , the excitonic complex forms and may affect, to

some extent, the optical spectra of the host material. The
stability of such a complex depends on the electron-hole

mass ratio o=my/m,. Several works have been

devoted to this question [5-9]. Particularly, Skettrup et
al. [8] have shown that the D*X complex stabilizes for
al o vaues lying lower than a critical point
0. =0.426. Recently, dos Santos et al. [10] have

reconsidered again the question and calculated o by an
origina adiabatic approach using hyperspherical
coordinates and obtained o, =0.431. In the particular
case of 2D system, Stauffer and Stébé [9] have shown
that the range of stability extends to o2° =0.88.

However, if one reviews the literature in the area, oneis
surprised by the insufficiency of works carrying on the
effect of the electric field on D*X complex, in particular,
the calculation of polarizability. To our knowledge, the
unique work dealing with this question is that of
Essaoudi et al. [11] in which the specific case of
GaAs/Gay ,AlAs quantum well with the electric field

applied parallel to the growth direction is studied. It has
been shown in this work that the D*X complex is
sensitive to the action of the field only for well widths
higher than 10 nm. The numerical method used in this
calculation cannot be generalized to the bulk limiting
case because of the axia character of the used tria
function inherent in the specific case of the 2D
symmetry.

Let's recall that in a previous paper, we have

calculated the polarizability of X~ and X3 complexes

[12, 13]. But for these systems, the range of stability
covers al o-values whereas for D*X, the range of
stability is limited. Thisis why we were interested in the
present study. In what follows we calculate the electric
polarizability of D*X complex in the framework of the
variational method by using atrial function including 56
terms which gives an accurate numerical result.

This paper is organized as follows: in section 1l we
outline our method to determine the polarizability of
D*X, in section |1l we explain our numerical method
using a 56 terms trial wave function. Finally, in the last
section we discuss our results.

2. The model

In the effective mass approximation, the Hamiltonian of
an ionized donor bound to an exciton in the presence of
aconstant electric field F directed along to the z-axis can
be written as:

H=Ho+ W, (1)
where Hy is given by
Ho=T+ V. 2
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Here, T is the kinetic energy and V is the Coulomb
interaction between the particles of the system

1

o
T :—EAE—EAh, (3)
yo t,t 1 @
e T Ten
and W is the electric energy operator
W =(z,-z,)F . (5

Note that in the previous expressions, we have used
the atomic units (au.); ap =sh?/mee® as the unit of

length, ED=e2/‘9aD as the unit of energy and

Fy = Ep /eay asthe unit of electric field strength. ¢is

an appropriate dielectric constant taking into account
possible  polarization  effects. The  parameter

o =m, /m, defines the electron-to-hole effective mass

ratio. ro and ry, are the distances from the ionized donor
to the electron and the hole, respectively, while rg, is the
distance between the electron and the hole. z, and z,
denote the coordinates of the electron and the hole along

the electric field direction, respectively. A, and A, are

the Laplacian operators with respect to the hole and
electron coordinates.

In order to calculate the polarizability « of the
system, we develop the wave function ¥ and the energy
E of the system in power series with respect to the
electric field intensity. So we have

Y=V, + ¥, F+¥,F2+..., (6)
_{F[H]¥) _ 2
= W] =Ey+E F+E,F+..., (7)

where ¥, ¥, and ¥, are F-independent functions, ¥q
and E; being the wave function and the energy of D*Xin
the absence of the field. Substituting H and ¥ in
equation (7) and taking into account the spherical
symmetry of the ground state in absence of electric field
(F=0), we obtain:

w0 ©
E, =- E a
where the polarizability « is given by
” 2<‘¥1 ‘HO“{JI >+ 2E0<\P1 ‘\Pl > -4 <\I’O‘(Ze - Zh)"yl >
a= <‘{’O|‘~Ifo> +
+8EOM .
(¥o[ o)
9)

One may ensure, as established in the appendix,
that this entity is essentially positive for al o values,
what proves the stability of the complex for any weak
eectric field. Furthermore, equation (9) shows that the
polarizability « depends only on E, ¥, and ¥,, the
terms including ¥, simplify. E; and ‘P are the well-
known energy and wave function of the ground state of
D*X in absence of electric field which are determined
variationally by several authors [5-9]. Aswe can remark,
the determination of the polarizability requires the
knowledge of the wave function part ¥;. On the other
hand, since we are interested with the calculation of the
polarizability, we consider that the electric field is
sufficiently low, so, we can restrict the development of
the energy to its quadratic form:

E=Ey+ EF2 (10)

Then it is convenient to use the variational method
for calculating the energy E of the ground state of the
system. With account of the symmetry of the problem,
the trial function W is chosen in the following way [12]:

Wy (e T T Zer Z) = 2 (e 1 Tep) (1)
where
7= 2~12, 12)

f is a function that contains the variational parameters.
Hence,

(13)

Such a choice alows considerable simplifications.
First, we can ensure that the integral <‘{’0 “P1>

vanishes. In addition, we may establish the following
relations whatever the choice of the function f(re,rn,ren):

Ho(ze —2,)| f)=(2e — 2,)Ho| )+

+(Ué‘é)|f>:ZH0|f>—(l+a)%|f>, (14)
(F[22Ho| 1) =3{frdHo| 1), (153
(1] 1) =21Vl 1)

:§<f|rmi|f>, (1)
(F122 1) =3{1[rd] 1) (150
<\PO‘ZZ|f>:%<‘I’o‘re2h|f> : (15d)
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In these conditions, the expected value of E, is
written as:

~(f]e]f)+2(¥o || )

E =min , (16)
3(%| %)

where the operator G is given by

G=rgH, —Eord — (1+0) rehi . (17)

O

The expression (16) shows that the calculation of
E, involves only the distancesre, Iy, ren.

Next we use for W, the expression given by
Stauffer and Stébé [9] :

Fo(situ) = Zcmnk”””s'umt”exp(—%) . (18

I,mn

The exponents |, m, n are positive or zero integers
and the elliptical coordinatess, t, u are given by

S=rfe+ gy t=Ta—Tep, U= Th. (19

The scaling factor k and the linear coefficients Cy,
are determined variationaly for each o value in the range
of stahility. We choose the function f in the following
form:

ks
| |
fre 1y fe) = E Ak ™" s umt”exp(—?) , (20)

I,mn

where A, are the linear variational parameters.
Following the Hasse variational method [15], we use the
values of k and C,,, that we obtain by minimizing the
mean values of the Hamiltonian Hy in the absence of
electric field. The variational parameters A, are
obtained by minimising the following expression (21)
obtained after substituting eguations (18) and (20) into
(16).

A*GA+2C*RA

E, =min —
2 3k2C*SC

: (21)

where ;.((E ) denotes the column matrix of the
coefficients Am(Cm) and K*(é*) its transposed

matrix. G , Rand S ae the squared matrices of the
coefficients defined by:

Gl = (Imn|(r& (k*T +KkV - E;) -

— @+ o)y, —L|1rmin), (223
O

R = (jmn|rg[1I'min) (22b)

S = (Imn[1'min) (220)

The basic functions |Inn) are given by

|Imn) = slu™" exp(—g) . (23)
Equalling to zero the derivative of the expression

involved in equation (21) with respect to A , wefind the
following secular equation for Ay,

%(é‘ué')/"&:—ﬁé , (24)
which yields
_2 C'RA
(Z:—i...—R...A...), (25)
%2 C*sC

where ;0 isthe solution of the equation (24).

3. Numerical steps

The calculation of the scaling factor k, the coefficients
Cim and the energy E, is derived from the solution of the
generalized eigenvalue problem [9]

IS(S:k(S(E (26)
with
R =—(Imn|V|I'm'n) and Q=T +4S, 27)
where
e c*TC
T = (Imn|T|I'mn) and f==—==.  (28)
c*sc

Starting from B, =(1+0oc/2)/4 that corresponds

to the asymptotic behavior, we calculate the upper
eigenvalue k, and then we deduce the corresponding

vector C which givesthe next value of § and so on until

the desired convergence on g, k and C. Consequently,
the energy E, is deduced from the relation

E, = —Ak?[9]. Let'snotein passing that the solution of
equation (26) requires to solve the eigenvalue problem
of the real symmetric matrix M = QY2PQ~Y2. This

calculation is performed by using the Jacobi numerical
method [14]. The system of linear equations (24) is
solved numerically by using the LU-decomposition
method [14]. Practically, we have limited the
development of the functions W, and W, to 56 terms
corresponding to the condition | + m+n < 5. Within this
approximation, we obtain a rather good value of the
critical massratio o= 0.367.

4. Results

The variations of the polarizability of D*X versus the
mass ratio ¢ is presented in Fig. 1 (solid line). It is seen
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that the polarizability increases with increasing ¢ up to
the critical value o, in the vicinity of which an
asymptotic behaviour is observed. Such a result may be
interpreted physically by the weak bonding of the hole to
the neutral donor in this point. Indeed, it is well known
that the binding energy of D*X decreases with increasing
o in the absence of the electric field [8]. In the presence
of awesk field, the hole is removed far from the electron
aong the direction of the field. This behaviour is
confirmed by the variations of the electron polarizability
(ae) and the hole polarizability (o) defined by (Z,) =
aenF for weak electric field. This result is illustrated in
Fig. 1 (dashed lines). The polarizability of D*X is then
given by a= an — a. This asymptotic trend attests the
consistency of our method because it is compatible with
physics of such systems.

After calculating the polarizability, we have
deduced the binding energy of the complex in the
presence of aweak electric field, which is defined as

w=E(D° -E. (29

4500

ay, = hole polarizability
a, = electron polrizability

o= 0Ol - Ol
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Fig. 1. The polarizability of D*X complex (in a.u. =ea%) asa
function of the electron-to-hole effective mass ratio (solid
line). Electron and hole polarizabilitiesin D*X (dashed lines).
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Fig. 2. The variation of ionization electric field (in au.)
Versus o.

The calculation was made in the weak field
approximation: F<<F,, where F, is the ionization field
defined by

el -

As an illustration, the variations of F, versus o are
reported in Fig. 2.

In this condition, the neutral donor energy can be
written as follows:

1

W ==~ Eo. (30)

1 9
E(D%) =-=-=F?2 31
(D) > (31)
and in the same way:
E:EO—%aFZ. (32)

Practically, we have restricted our calculation to the
strength field value F = 0.3F, which may be considered as
consistent with the quadratic approximation in calculating
the binding energy. Recall that it has been shown [16] that
the perturbative calculation of the binding energy of the
exciton for the strength field values up to 0.5F, gives
good results. In Table, we report the values (in a.u.) of ¢,
W, and W for the strength fidld value F = 0.3F, in the
range of o values between 0 and o.
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Table. Listing of a, Wy, and W for the strength field value F
=0.3F,, in therange of ovaluesbetween 0 and o (in a.u.)

c a F =0.3F Wy w
0 22 0.01381 0.08378 0.08545
0.05 39 0.00832 0.05767 0.05886
0.1 7 0.00496 0.03946 0.04035
0.15 143 0.00285 0.02618 0.02674
0.2 289 0.00153 0.01645 0.01678
0.25 630 0.00074 0.00941 0.00958
0.3 1488 0.00029 0.00444 0.00450
0.35 4483 0.00005 0.00096 0.00096
A 0 0 0 0

As an indication, we have calculated the value op
of o for which the polarizability equals that of D~
system. To do that, analogy of D~ with the negative
hydrogen ion [17] is made and gives op = 0.1765 with
the corresponding polarizability « = 206 (au.). That
means that for this limiting value of o, the shift of both
D~ and D*X lines in the optical spectra when a weak
electric field is applied is the same. Hence, for
semiconductors with o < o , the D*X shift is lower than
that of D™ while the situation is inverted for o > op .

In summary, we have presented a variational
calculation of the polarizability of D*X as well as the
binding energy in the presence of a weak electric field.
This study shows an asymptotic behaviour of the
polarizability in the vicinity of c.. This behaviour is
principally due to the contribution of the hole which is
weakly bound to the neutral donor D°. It has been
established also that the effect of aweak electric field is
more pronounced for ¢ values lower that o= 0.3. Asa
comparison, confrontation of the polarizability of D*X
with D™ system is made and shows that it is possible to
range the semiconductors in two classes following the
relative shift of D*X and D™ lines.

Appendix

We establish in what follows the effect of the
stabilization of D*X complex in the presence of weak
electric field. The expansion in power series of the
dipolar electric moment in terms of the electric field
strength yields:
(\¥|(z, - z)|¥)
(]¥)

_ 2<\I’0 ‘(zh - ze)“{’1 >

o

By identifyingto « asgiven by Eq. (9), we obtain:

(A1)

F+.=aF+....

<\P0 ‘(Ze_zh)‘\yl>: Eo<\P1 ‘\P1>‘
(o )

(¥o[#o)
Substituting then (A2) in (9) gives
Lt lHol ) Bl )

o}
(ol

0, | .2°

(¥ol o)
It is evident that the first term in (A3) is positive
because of the variational principle, and regarding to the
negative value of E,, the sign of « is aways positive

which asserts the property of the stability of the complex
as advanced above.

(9, ol ) s 2

(A3)
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