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Abstract. In this paper, we are interested in solving the Lagrange partial differential 
equation of the fourth order, which governs the deformation of a thin silicon square 
membrane, perfectly embedded and subjected to a uniform static pressure in the case of 
the weak disturbances. The proposed approach that consists of using the Galerkin method 
with trigonometrical basis functions is simple, easy to implement and ensures a good 
stability of the algorithm and a satisfactory accuracy. 
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1. Introduction 

The study of the deformation of a membrane perfectly 
embedded at the edges is very significant in the 
realization of the pressure microsensors. Indeed, the 
knowledge of the membrane response to an external 
pressure excitation makes it possible to determine its 
characteristics and performances. The exact solution of 
this type of the problem does not exist. However, several 
approaches were proposed, in particular, the Ritz 
Raleigh method and the Galerkin method [1-7]. 

Ben Moussa [6] and Naciri [7] proposed a solution 
using the Galerkin method with a polynomial appro-
ximation. The study of the results obtained highlighted 
the limits of this model in accuracy as well as in 
convergence. Theoretically, this method is more accurate 
when the number of the basis functions becomes high. 
However, for the models described by Ben Moussa [6] 
and Naciri [7], the precision condition is not verified, 
because the algorithm is numerically unstable. 

Accordingly, we propose to improve this technique by 
using trigonometrical basis functions. The analyzed 
structure is a membrane of a square shape. This membrane 
is supposed to be perfectly embedded at the edges and 
subjected to a constant static pressure as shown in Fig. 1. 
The problem is based on the principle of the minimization 
of energy under the assumption of weak disturbances. 

The paper is organized as follows. In the first 
section, we recall the establishment of the partial 
differential equation that governs the deflection of a 
membrane perfectly embedded at the edges and 

subjected to a constant static pressure. The second 
section is devoted to the mathematical formulation of the 
equations allowing the analytical semi solution of the 
Galerkin method. We present then the numerical 
solution of the linear problem bkA

rr
= . Section 4 will be 

devoted to the presentation of the results obtained and a 
comparative study between these two models used. In 
conclusion, we comment the main results obtained by 
specifying the impact of this study on the realization of 
the pressure microsensors. 

2. Establishment of the fundamental equation of the 
membrane deflection  
2.1. Geometry of the membrane  
The membrane of rectangular or square shape of silicon is 
described in Fig. 1. It is a microstructure directed 
according to the crystallographic plane (110) deposited on 
the substrate of orientation (100) [8], dimensions of which 
are: the length 2a according to the OX axis, width 2b 
according to the OY one, height h according to the OZ 
one with h << 2a and h << 2b (assumption of thin 
section). We define R as the ratio of membrane 
dimensions such as R = b/a. In our study, we consider the 
case, where the membrane is square, then we take R = 1 
and a = b.    

According to the theory of the thin sections [9], the 
mechanical behaviour of a membrane subjected to a 
uniform and static pressure P in the case of the weak 
disturbances, w << h, is governed by the following 
Lagrange equation of the fourth order:  
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Fig. 1. Schematic top-view of the structure (a); a-sections of 
the structure over the xoz plane with P = 0 (b) and with applied 
P (c). 
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with Siα  is the coefficient characterizing the anisotropy 
of the silicon material, which is defined by [9-10]  

( )2
Si 12 ννα −+=

E
G   (2)  

and D is the coefficient of rigidity of the material, which 
is given by  

D = 
)1(12 2

3

ν−

hE
, (3)  

where ν  is the Poisson ratio, E is the Young modulus 
and G is the Coulomb (shear) modulus. The boundary 
conditions imposed by the embedding of the membrane 
on its board [10, 11] are:  

0),( =∀±= yaxw , (4a)  

0),( =±=∀ byxw ,  (4b)  
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x
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∂ byx
y
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2.2. The method of Galerkin  

This method is based on the variational formulation that 
is the starting point for the solution by using the method 
of finite elements and the spectral methods. It consists of 
choosing orthogonal basis functions ),( yxjiφ such as:  

mjkijiji yxyx δδφφ ×=⊗ ),( ),(  . (5)    

The setting equation of the Galerkin method 
consists of finding the variational form of the 
equilibrium equation (1) corresponding to the problem 
which is obtained starting from the minimization of the 
functional calculus F( ),( yxjiφ ) [12, 13] 
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where ),( yxjiφ  is the basis function that must be 
orthogonal and verify the boundary conditions of the 
problem governed by (1). D is the field of integration 
along the membrane surface. From (6), we find aij and bij 

that allows us to solve the linear problem bkA
rr

=  
numerically, where aij and bij are, respectively, the 
elements of the matrices [A] and [B] described by the 
following equations: 

,),(
),(

),(
2

),(

4

4

22

4

Si4

4

yxyx
y

yx

yx

yx

x

yx
a

ji
ji

jiji
ji

∂∂
⎥
⎥
⎦

⎤

∂

∂
+

+
⎢
⎢
⎣

⎡

∂∂

∂
+

∂

∂
= ∫∫

φ
φ

φ
α

φ

   (7) 

0),( =∂∂= ∫∫ yxyx
D
Pb jiji φ   (8) 

and the coefficients kij of the matrix [K] are the unknown 
factors to be determined numerically. 

We can then substitute the deformation expression 
w(x, y) by the basis functions expression ),( yxjiφ  in the 
equation (1) and, thus, we obtain the following equation: 

D
P

y

yx

yx

yx

yx
k

jiji

ji
ji

n

j

n

i

=
⎥
⎥
⎦

⎤

∂

∂
+

∂∂

∂
+

+
⎢
⎢
⎣

⎡

∂

∂
∑∑
==

4

4

22

4

Si

4

4

00

),(),(
2

x

),(

φφ
α

φ

  (9)  

by carrying out all the analytical calculations, from the 
equations (7), (8) we obtain the elements aij, bij of the 
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Table 1. Values of the reduced coefficients kij  for  n = 3. 

Model k k00 k02 = k20 k22 k24 = k42 k40 = k04 k44 

[6] 0.0220 1 0.2140 0.2700 0.0980 −0.0062 −0.1035 

Polynomial 0.0220 1 0.2143 0.2697 0.0985 
 

−0.0061 −0.1057 

Trigono- 
metrical 

0.0224 1 0.0284 0.0123 0.0030 0.0038 0.0016 

 

matrices [A] and [B] that define the system of linear 
equations where the elements kij are to be determined              

[ ] [ ] [ ]BKA =  .                                                            (10)  

After numerical solution of this equation, we obtain 
the expression of the deflection w(x, y) at  any point of 
the membrane: 
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Choice of the basis functions: polynomial model  

The choice of the type and the number of the basis 
functions to be used is conditioned by a better 
approximation of the real solution (convergence to the 
solution) and of the execution time of calculations. For 
the sake of comparison, we first carry out the work done 
in [6, 7] which uses the two-dimensional polynomial 
function of the type: 
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with i, j even numbers. This basis function satisfies the 
boundary conditions imposed by the perfect embedding 
of the membrane (4a)-(4d). We will substitute this 
expression of the basis function into equation (9), which 
makes it possible to obtain the solution of the linear 
equations system (10).   

3. Numerical solution  

The numerical solution of the system of linear equations 
(10), using Mat lab, makes it possible to determine the 
standardized coefficients kij, kij = kij / k00 that are 
summerized in Table 1. 

We note that these results are identical to those 
obtained in [6, 7] for n = 3. As the Galerkin method is 
more accurate when the number of basis functions is 
higher, we refined the model by using various values of 
n (n = 4, 5, 6, 7,…, 16, etc.). Unfortunately, the results 
obtained show that: 
• the coefficients kij do not converge any more; 
• the orthogonality condition of the matrix [A] is not 

valid any more; 
• for n = 7, the limiting value of this model, the 

matrix is singular and its numerical conditioning 
cannot be done.  

 

This proves that this model is limited and not 
accurate. 

From the previous observations, we were brought 
to consider new basis functions ensuring a better 
convergence to the solution, a reduced computing time 
as n tends to infinity as well as a better accuracy.  

Proposed approach: trigonometrical model  

The choice of this basis function was made after having 
prospecting several types of functions; ultimately we 
choose the following function:  
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where i, j are the even numbers varying from 0 to n.  
This trigonometrical basis function satisfies the 

Galerkin condition of equation (5) and the boundary 
conditions of equations (4a)-(4d).  

Therefore, the deflection w(x, y) could be 
calculated starting from expression (11). After doing all 
calculations, the solution of equation (10) makes it 
possible to determine the coefficients kij that reconstitute 
the approximate expression of the deflection w(x, y) at 
any point. The first conclusion one can make is that the 
basis functions used give a matrix [A] orthogonal which 
is the necessary Galerkin method condition. The results 
obtained for n = 3 are summarized in Table 1. 

4. Results and discussion 

From the given coefficients kij, we calculate the 
approximate value of the deformation of the membrane 
w(x, y) at any point. This deformation is expressed as: 
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 in the case of the polynomial model and  
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in the case of the trigonometrical model. 
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From the expressions (14) and (15), we plot the 
deflection curves w(x, y) for n = 3. For convenience, we 
use the standardized expression compared to the mem-
brane dimensions. Thus, we define the maximum def-
lection expression in the center of the membrane [6] as 

w00 = k (P a2 b2) /16 D ,  (16) 

where k is the real constant and its value is given in 
Table 2 for different used models. 

We represent the normalized deflection [w(x,y)/w00] 
and its contour lines in Fig. 2.  

Substituting the expressions (14), (15) of the 
deflection w(x, y) in the equations defining the 
constraints according to the deformation [9, 10], we 
obtain the normal and shearing components expressions 
of the tensor of the constraints xxσ yyσ xyσ  as :  
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From these expressions, we plot the curves of the 
),( yxyyσ  and ),( yxxyσ  constraints for n = 3, which are 

illustrated in Figs 3 and 4. The curves of Figs 3a and 4a 
are identical to those found in [6, 7] that validates our 
calculations.  

The comparison of the various curves obtained for 
these two models leads to some interesting points. 

Our model emphasizes the existence of a critical 
deformation line at the median location in both 
directions, x = 0 ∀ y, and y =0 ∀ x, which bears a visible 
sharpness in the deformation profile, as it is shown in 
Fig. 2b. This critical line is the main feature revealed by 
the present model. It is a remarkable specifity of the 
real-world square shaped embedded membrane, which 
cannot be perceived through the results of the existing 
models from the literature up to date (compared with 
Fig. 2a).  

As an immediate consequence, this critical line is 
the site of a significant peak in the magnitude of yyσ  
constraint (Fig. 3a), and a drastic discontinuity in the 
magnitude of xyσ  constraint (Fig. 4b). 

Table 2. Value of the constant  k  for n = 3, for  x = y = 0 for 
different models used. 

 [6] Polynomial Trigonometrical 

k 0.022000 0.022000 0.022415 
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Fig. 2. a – polynomial model: normalized deflection 

[w(x,y)/w00]; b – trigonometrical model: normalized deflection 

[w(x,y)/w00]; c – polynomial model: normalized deflection 

[w(x,y)/w00] and its contour lines; d – trigonometrical model: 

normalized deflection [w(x,y)/w00] and its contour lines. 
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a 

b 
 
Fig. 3. a – polynomial model:  normal stress σyy(x, y);              
b – trigonometrical model: normal stress  σyy(x, y). 
 
 

We predict that this remark would have an 
important technological impact in the design of 
optimized devices, in the sense that it makes possible 
an accurate knowledge of the optimal position of the 
strain gauges on the membrane. We have also plotted 
the curves of convergence of the coefficient kij with 
respect to the number of basis functions used, n, for 
these two models for some values of i and j. We note 
that our model converges more quickly. The curves are 
presented in Fig. 5. From the results of simulation we 
can affirm that:  

1. For a number of basis functions n = 3, the curves 
and the values of the standardized coefficients kij 
obtained are those exactly obtained in [6, 7]. These 
values were recalculated for the sake of comparison and 
also to confirm the exactness of our results.  

2. The maximum deflection w00 equals for 
polynomial case  w00 = 4.6625⋅10−6 UI, trigonometrical 
case  w00 = 4.7529⋅10−6 UI. 

It is noted that the maximum value of the deflection 
is slightly higher in the trigonometrical case, that is to 
say an inaccuracy of about 2 % tolerated by the 
polynomial model. 

To estimate the error ε  of the approximation, we 
use the exact relation of the deflection w(x, y) given by 

 a 

 b 
 
Fig. 4. a – polynomial model:  shear stress σxy(x, y);                 
b – trigonometrical model:  shear stress σxy(x, y).  
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Fig. 5. Convergence curves kij = f(n) for i = 0, j = 6 (a) and 
i = 4,  j = 6 (b). 
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where the error ε  is given by the expression  

∑
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From expression (18) and for n = 16, the error ε  in 
our model is about 10−12. The values of the standardized 
coefficients kij are smaller (about 10−14). For comparison, 
the error is about 10−3  in the polynomial model from    
[6, 7], and cannot be improved owing to the fact that the 
matrix [A] becomes singular if n increases. 

In the theory, the error ε  tends to zero as n 
increases, however there exists a threshold n, beyond 
which the error does not vary any more in a significant 
way. This makes it possible to affirm that our model is 
more accurate, simpler to implement and with a much 
reduced computing time.  

 

5. Conclusions 

In this work, we highlighted the limits of the polynomial 
model, which can be summarized as follows: 

1. The number of basis functions is limited to 
n = 3, and increasing n causes a deterioration of the 
convergence and stability of the model. 

2. Relative increase in the computing time and a 
reduction in the precision. The absolute error does not 
tend to zero as n tends to infinity. 

The trigonometrical model allows to obtain more 
accurate results and with a reduced computing time. 

Our model (that is confirmed by two objective 
mathematical criteria: the estimation of  the relative error 
and the computation of convergence rate) is among all 
the approaches proposed in the literature the one which 
reproduces with the nearest technological conformity the 
real-world square shaped membrane.      
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