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Abstract. Radar remote sensing deals with the extraction of object information from 
electromagnetic wave parameters. To fully exploit the potential of acquiring quantitative 
information requires a detailed description of the microwaves scattering. The research on 
this topic was mostly centered on far-field analysis that assumes an incident plane wave, 
computation of its scattered field, and evaluation of the radar cross section. However, 
under certain practical conditions, the far-field analysis is not valid and a near-field 
analysis is necessary. In this paper, we have given a full analysis of the near-field of a 
wedge structure due to an incident wave field from a line source or a plane wave. The 
far-field pattern, for the case of a line source exciting the structure, is also analyzed.       
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1. Introduction 

The problem of electromagnetic wave scattering is very 
important in many applications, namely, remote sensing, 
antennas design and especially in defense applications. The 
research on this topic was mostly centered on far-field 
analysis that assumes an incident plane wave, computation 
of its scattered field due to the scatterer, and evaluation of 
the radar cross section (RCS) of the scatterer. When the 
transmitting and receiving antennas are far from the 
scatterer, the incident wave can be approximated by a plane 
wave and the scattered far-field can be regarded as the 
radiation far-field due to the induced currents on the 
scatterer, the far-field analysis thus applies. However, in 
practical applications, there are many situations, when the 
distance between the transmitting antenna and the scatterer 
is not large enough to treat the field arriving the scatterer as 
a plane wave, and the relative motion between the antennas 
and scatterer will produce the Doppler frequency shift. In 
these conditions, the far-field analysis is not valid and a 
near-field analysis is necessary [1]. 

In calculating the radar cross section of complex 
targets [2, 3], some parts of the structure can be modeled 
using singly curved sheets as, for example, the wings of 
an aircraft. For electrically large bodies, the geometrical 
theory of diffraction (GTD) [4, 5] is a good high 
frequency technique to compute the scattering from 
those bodies. But, as is well known, that method is not 

valid in the caustic of reflected rays, which occurs, for 
example, when we illuminate a singly curved screen 
with a plane wave. Physical optics (PO) has been largely 
used in the last years to predict high frequency radar 
cross section problems, because, unlike geometrical 
optics and the GTD, it is valid in the transition regions 
and at caustics. PO can be improved using the fringe 
currents contribution of the edge currents of the physical 
theory of diffraction (PTD) [6, 7].  

This paper is organized as follows. Section 2 
provides the scattering analysis; we present the RCS 
formulae and possible approximations. We calculate 
field expressions for the problem of scattering by a two-
dimensional perfect electric conduction wedge capped 
with a dielectric cylinder. In Section 3, some numerical 
results for various configurations of the wedge structure 
are presented. Finally, a conclusion is given. 

2. Scattering analysis  

The RCS of a target characterizes its scattering property 
that is defined as the area intercepting the amount of 
power that, when scattered isotropically, produces in a 
receiver a density that is equal to the density scattered by 
the actual target. When the transmitter and receiver are 
in the same location, the RCS is referred to as mono-
static (or backscattered), and it is referred to as bistatic 
when these two ones are located at different positions. 
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For three-dimensional target, the RCS is given in 
terms of incident power density, magnetic field, and 
electric field [8]. The RCS in terms of electric field is 
given by 
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where ρ  is the distance from the target to observation 

point, sE and iE are the scattered and incident electric 
field. Eq. (1) is valid when the target is illuminated by a 
plane wave that in practice can be only approximated 
when the target is placed in the far-field of the source, at 
least λ=ρ 22D , where D  is the largest dimension of 
the target.  

Consider a perfectly conducting rectangular thin-
flat plate in the yx −  plane as shown in Fig. 1. For a 
linearly polarized incident wave in the yx −  plane, the 
horizontal and vertical backscattered RCSs are, respecti-
vely, given by 
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Fig. 1. Coordinates for the rectangular flat plate. 

 
Here akka 0= , 0k  is the free space wave number. 
Eqs (2) and (3) are valid quite accurate for the aspect 
angles °≤θ≤ 800 . For the aspect angles near 90°, Ross 
[9] obtained an empirical expression for the RCS by 
extensive fitting of measured data. It is given by 
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The backscattered RCS for a perfectly conducting 
thin rectangular plate for incident waves at any θ , ϕ  
can be approximated by 
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Eq. (7) is independent of the polarization, and it is 
only valid for the aspect angles °≤θ 20 . Fig. 2 shows 
the backscattered RCS of a rectangular flat plate, for 
both vertical and horizontal polarizations. 

 The goal of analysis is to find the field expressions 
for the problem of scattering by a two-dimensional (2-D) 
perfect electric conduction (PEC) wedge capped with a 
dielectric cylinder as shown in Fig. 3. Using the 
cylindrical coordinates system, the excitation due to an 
electric line current of amplitude eI  located at ( )00, ϕρ  
result in transverse magnetic (TM) incident field with 
the electric field expression given by 
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Fig. 2. Backscattered RCS for a rectangular flat plate of 
vertical (a) and horizontal (b) polarizations. 
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where ( )2
0H is the Hankel function of the second kind of 

order zero. 
The problem is divided into three regions I, II, and 

III. The field expressions may be assumed to take the 
following forms: 
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where 1k  is the wave number inside the dielectric, 
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Fig. 3. Capped wedge structure. 
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while ( )xJv  and ( )2
vH are the Bessel and Hankel 

functions of order v  and argument x . From the 
Maxwell equations, the magnetic field component ϕH  

is related to the electric field component zE  for a TM 

wave by 
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Thus, the magnetic field component ϕH  in the 
various regions may be written as 
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where the prime indicates derivatives with respect to the 
full argument of the function. The boundary conditions 
require that the tangential electric field components 
vanish at the PEC surface. Also, the tangential field 
components should be continuous across the air-
dielectric surface and the virtual boundary between the 
regions I and II, except for the discontinuity of the 
magnetic field at the source point. Thus,  

0=zE  at  β−πα=ϕ 2, ,             (13) 

⎪⎩

⎪
⎨
⎧

=
=

ϕϕ
III

III

HH
EE zz  at a=ρ  ,  (14) 

⎪⎩

⎪
⎨
⎧

=
=

ϕϕ
IIIII

IIIII

HH
EE zz  at 0ρ=ρ  . (15) 

The current density eJ  may be given in the Fourier 
series expansion as  
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The boundary condition on the PEC surface is 
automatically satisfied by the ϕ  dependence of the 
electric field Eq. (9). From the boundary conditions in 
Eq. (14)  
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From the boundary conditions in Eq. (15), we have 
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Since Eqs (17) and (20) hold for all ϕ , the series of 
the left and right hand sides are equal term by term, 
more precisely, 

( ) ( ) ( )( )avnavnavn kHckJbkJa 2
1 +=  ,                         (21) 

( ) ( ) ( ) ( )⎟
⎠
⎞⎜

⎝
⎛ += avnavnavn kHckJbkkJak '2'

1
'

1 ,  (22) 

( ) ( )( ) ( )( )00
2

00
2

00 ρ=ρ+ρ kHdkHckJb vnvnvn , (23) 

( ) ( ) ( )
( ) ( ) ,

2
2

0

0
0

'2

0
'2

0
'

ρβ−α−π
η

−ρ=

=ρ+ρ

e
vn

vnvn

IjkHd

kHckJb
 (24) 

where 0η  is the characteristic impedance of free space. 
From Eqs (21) and (23), we have 
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After some mathematical operations, we get  
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Substituting nb  in Eqs (21) and (22) and solving 
for nc  yield 
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From Eqs (26) through (28), nd may be given by 
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with these closed form expressions for the expansion 
coefficients na , nb , nc  and nd , the field components 

zE  and ϕH  can be determined from Eqs (9) and (12), 
respectively. Alternatively, the magnetic field 
component ρH  can be computed from  
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Thus, the ρH  expressions for the three regions 
defined in Fig. 3 become  
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In the region III, the far scattered field may be 

found as the difference between the total and incident 
field. Thus, using Eqs (8) and (9) and considering the 
far-field condition ( )∞→ρ  we get 
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Fig. 4. Total far-field pattern of a line source near a con-
ducting wedge with conducting-capped (a) and dielectric-
capped edges (b).  
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For the plane wave excitation ( )∞→ρ0 , the 
expressions in Eqs (27) and (28) reduce to 
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Fig. 5. Near-field patterns of a line source near a conducting 
wedge with a conducting-capped edge zE (a), ρH (b), ϕH (c). 

 

where the complex of the incident plane wave, 0E , can 
be given by 
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in this case, the field components can be evaluated in the 
regions I and II only. 
 
 
3. Numerical results and discussion 
 
Fig. 2 presents the radar cross section of a rectangular 
flat plate for the vertical and horizontal polarizations, 
compared with the classical formulae. The parameters of 
structure are cm16.10== ba and MHz300=f .  

Fig. 4 presents the far-field of a capped wedge in 
the presence of an electric line source field. We clearly 
show how the cap parameters affect the maximum 
radiation of the line source in the presence of wedge. 
The distribution of the components of the fields on the 
near-field of two cases (conducting capped edge, 
dielectric capped edge) is computed and shown in Figs 5 
and 6. The near-field distribution for an incident wave 
field of these two types of wedges is also computed and 
shown in Figs 7 and 8. These near-field distributions 
clearly demonstrated the effect of cap parameters in 
altering the sharp edge singular behaviour. We have 
used the following wedge structure parameters: 
a= 0.15 cm, 0ρ = 0.5 cm, o30=β=α , γε = 3, Ie = 1 mA. 

 

 
a 

                          b                                         c 
Fig. 6. Near-field patterns of a line source near a conducting 
wedge with a dielectric-capped edge zE (a), ρH (b), ϕH (c). 

 



 
Semiconductor Physics, Quantum Electronics & Optoelectronics, 2006. V. 9, N 4. P. 71-76. 

 

 

© 2006, V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine 
 

76 

 
a 

 
b                                         c 

Fig. 7. Near-field patterns of the plane wave incident on a 
conducting wedge with a conducting-capped edge zE (a), 

ρH (b), ϕH (c). 

 
a 

 
b                                         c 

Fig. 8. Near-field patterns of the plane wave incident on a 
conducting wedge with a dielectric-capped edge zE (a), 

ρH (b), ϕH (c).  

 

 

 

4. Conclusion 

In this paper, we have presented a full analysis of 
electromagnetic scattering. We have presented a case of 
backscattered radar cross section for a rectangular flat 
plate. The analysis of the far- and near-field patterns for 
a wedge structure shows the effect of cap parameters on 
the maximum radiation of the line source. We have also 
examined the effect the cap parameters on the sharp 
edge behavior for an incident plane wave. 
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