
 
Semiconductor Physics, Quantum Electronics & Optoelectronics, 2007. V. 10, N 4. P. 42-46. 

 

 

© 2007, V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine 
 

42 

PACS 72.25.-b, 73.40.Ly, 75.+a 

Spin polarization in semimagnetic semiconductor  
two-barrier spin filters 

S.B. Lev, V.I. Sugakov, G.V. Vertsimakha 
Institute for Nuclear Research, NAS of Ukraine 
47, prospect Nauky, 03680 Kyiv, Ukraine 
  

Abstract. The spin-dependent tunneling of electrons through the CdMgTe-based two-
barrier resonant tunneling system with a semimagnetic CdMnTe well is studied. The 
level splitting in the semimagnetic well under an external magnetic field, caused by giant 
Zeeman splitting, allows one to achieve a high level of spin polarization of the current 
flowing through the spin filter. The current polarization degree depending on different 
parameters of the system such as the carrier density, concentration of magnetic ions, 
temperature, and the strength of the external magnetic and electric fields is analyzed. 
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1. Introduction 

During last few years, different facilities and methods of 
creation of systems with a considerable level of electron 
spin polarization were intensively studied because of the 
possible applications [1–3]. Thus, it is important to 
create appropriate spin filters for the polarized spin 
injection into an investigated system. There are two most 
popular systems for the spin polarization in 
semiconducting crystals. One of the candidates is the 
asymmetric nonmagnetic heterostructure based on the 
interface-induced Rashba spin-orbit coupling [4, 5]. 
Another possibility to create the spin filter is based on 
the effect of the spin dependent electron tunneling 
through semimagnetic semiconductor double-well 
structures. Such CdTe-based two-barrier system with 
semimagnetic barriers and well was proposed and 
theoretically investigated in work [6]. In semimagnetic 
semiconductors, the strong exchange interaction between 
the carriers and the localized spins of magnetic ions 
(giant Zeeman splitting) leads to a strong dependence of 
the energy of the resonant tunneling level on the external 
magnetic field and the spin of carriers. For a certain 
range of parameters of the system in an applied external 
electric field, two clear peaks of the current are observed 
experimentally [7]. Recently, similar systems with 
different configurations of barriers, for example two- 
and one-barrier spin filters, become very popular [8-16].  

As distinct from work [6], we consider the CdTe-
based resonant tunneling structure, in which magnetic 

impurities Mn are placed in the well and the barriers 
formed by the layers containing nonmagnetic impurities, 
Mg ions. System, in which Mg impurities are localized 
in barriers, allows one to tune the relative position of the 
resonant level in the well and the Fermi level outside the 
barriers, which leads to a higher degree of spin pola-
rization. In the present work, the polarization degree is 
investigated as a function of the system parameters: the 
charge carrier concentration, the size of the spin filter 
well and barriers, temperature, and so on. Such an ana-
lysis allows performing the system parameters optimi-
zation and obtaining the highest current and electron 
spin polarization. 

2. The system under consideration 

In the present work, we study the two-barrier semi-
magnetic semiconductor resonant tunneling structure 
Cd1−yMgyTe / Cd1−zMgzTe / Cd1−xMnxTe / Cd1−zMgzTe / 
Cd1−yMgyTe, where y < z. The general design of such a 
system and its band structure are shown in Fig. 1. 
Magnetic properties of the system are determined by the 
semimagnetic semiconductor CdMnTe layer that forms a 
quantum well in the structure. The concentration of 
charge carriers in the external layers of the system under 
study is created by the doping of the pre-barrier region. 
The Fermi energy is marked in the figure as EF. The 
electric and external magnetic fields are applied along 
the crystal growth direction z. A giant Zeeman splitting 
leads to a splitting of the resonant level in the 
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Fig. 1. Schematic diagram of the heterostructure and the band 
alignment for spin-up and the spin-down electrons in a 
magnetic field. Thin lines indicate the resonance levels for 
spin-up (solid) and the spin-down (dashed) electrons. 

 

semimagnetic layer, and thus the transition coefficient 
depends on the electron spin. We consider that the 
voltage drops mainly in the device region. First of all, 
we will calculate the current polarization relying on the 
transmission coefficients of electrons with different spin 
orientations. 

The Schrödinger equation for an electron in such a 
system has the form 
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where em  is the electron mass, B is the magnetic field, 
V(z, B, E) = Vx(z) + VB(z) + VE(z) is the potential which 
describes the crystal lattice deformation caused by the 
replacement of cations by the magnetic impurity ions 
Vx(z), the exchange interaction VB(z), and the influence 
of the applied external electric field VE(z), 
correspondingly. The electron current outside the spin 
filter is calculated on the base of the electron transition 
coefficient of the system of semiconductor barriers. 
Taking into account the fact that the potential V(z, B, E) 
depends on the variable z only and using the standard 
methods of calculations (e.g., see work [6]), we obtain 
the spin-dependent electron transition coefficient in the 
applied external magnetic and electrical fields as 
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The carrier current density is given by the formula  
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where ( )⊥Ef  is the Fermi-Dirac distribution function. 
By definition, the current polarization is determined as  
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3. The current polarization 

The spin-dependent electron transition coefficient in the 
two-barrier resonant tunneling structure Cd1−yMgyTe / 
Cd1−zMgzTe /Cd1−xMnxTe / Cd1−zMgzTe / Cd1−yMgyTe, 
was calculated in the case where the electron effective 
mass 00.096= mme , the dielectric constant 9.7=ε , 
the exchange integral N0α = 0.22 eV and QV = 0.6 [17]. 
The shape and the magnitude of the general potential is 
determined as a sum of the components Vx(z), VB(z), and 
VE(z), where VH(z) was calculated according to the 
empirical formula presented in [18], and Vx(z) was 
calculated by the equations Eg(Cd1−xMgxTe) = 
[1.606(1−x) + 3.6x −  0.3x(1−x)] eV and Eg(Cd1−xMgxTe) = 
[1.606(1−x) + 3.198x] eV with relative concentrations of 
the impurities Mn and Mg characterized by x = 0.05, y = 
0.06, z = 0.12. We chose the barriers widths L1 = L2 = 
70 Å and the well width, respectively, d = 60 Å. 

Figure 2 shows the total current of electrons against 
the applied voltage for the different values of the 
external magnetic field B = 0.5, 2, and 4 T, the donor 
concentration ND = 5·1022 m−3, and the temperature T = 
2 K. Each peak of the total current corresponds to the 
peak of the current with a certain electron spin 
polarization. The results of calculations of different 
components of the tunneling current for the donor 
concentration in the external layers of the structure equal 
to ND = 5·1022 m−3, which corresponds to the Fermi level 
Ef ≈ 5 meV, for the magnetic field B = 0.5 T and the 
temperature T = 2 K are shown in Fig. 2 by dotted 
curves. These curves show that, by changing the applied 
electric field, we can reach the situation where the 
current of electrons with a certain spin polarization will 
be greater by a few orders of magnitude than the current 
with the opposite spin polarization. According to the 
numerical calculation of the current polarization, we 
have a zero polarization for the magnetic field B = 0 T. 
Starting from B = 0.5 T, there exist some values of the 
bias, at which the value of polarization can reach 90 %. 
The range of the electric field, at which current 
polarization exceeds any demanded level (e.g., 90 %), 
will growth when the external magnetic field increases. 
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Fig. 3. Total current for different temperatures as a function 
of applied voltage, 222

0 /4= hπeJ . 
 
 

Fig. 4. Total current for the different values of the donor 
concentration (the Fermi level energy) as a function of the 
applied bias, 222

0 /4= hπeJ . 

 
Fig. 2. Current densities for spin-up and spin-down electrons 
and the total current for the different values of the external 
magnetic field as a function of the applied bias, 

222
0 /4= hπeJ . Dotted curves correspond to the current 

components with different spin polarizations of carriers for 
TB 5.0= . 

 
Figure 3 shows the total current under the applied 

voltage for the different temperatures T = 5, 10, and 
15 K, the external magnetic field B = 4 T, and the donor 
concentration in the leftmost layer ND = 5·1022 m−3. The 
figure shows that the peaks become wider when the 
temperature increases, and the correspondent maxima 
can overlap at a certain temperature. This behavior of the 
current of electrons with different spin orientations is 
explained by the distribution function dependence on the 
temperature because the greater temperature enlarges the 
range of the applied external electric field, in which 
there are the electrons in the conduction band of the 
leftmost layer with the energy corresponding to the 
resonant tunneling energy. In other words, the electron 
distribution change with increase in the temperature will 
override the phenomena caused by the splitting of 
resonant tunneling levels in the external magnetic field. 
For example, at some values of the structure parameters 
and external fields, the maximum value of the current 
polarization at the temperature T = 5 K can be Pj > 0.99. 
But, at the temperature T = 20 K, it does not exceed 0.5. 
A similar behavior of the current polarization as a 
function of temperature was observed in work [7] for a 
ZnSe-based system. The smaller experimental value of the 
separation of peaks can be explained by the greater 
concentration of carriers, which also agrees with our 
results presented in Fig. 3. 

All above-presented figures describe the current 
dependence on the parameters which change the location 
of the peaks of the currents of electrons with different 
spin orientations but do not change the value of the 
current essentially. Fig. 4 shows the dependence of the 
total current of electrons on the applied voltage for 
several different values of the donor concentration ND = 
5·1022, 1·1023, and 1.5·1023 m−3, at the temperature T = 
2 K, and the external magnetic field B = 6 T. These 
concentrations correspond to the different energies of the 
Fermi level: EF ~ 5, 10, and 15 meV, respectively. It is 

clearly seen from the figure that the absolute value of the 
current increases when the charge carrier concentration 
grows. Fig. 4 also indicates that increasing the donor 
concentration makes peaks wider and closer one to 
another. This behavior can be explained similarly as 
above, because the greater energy of the Fermi level 
enlarges the interval of applied external electric fields, at 
which there are electrons with corresponding energy in 
the pre-barrier region of the system. As shown above, 
the current polarization is very sensitive to the donor 
concentration. The current polarization also depends on 
a number of parameters of the system such as the widths 
of the barriers and the well, the concentration of 
nonmagnetic Mg ions in the barriers and magnetic ions 
in the well layer (the greater concentration of magnetic 
Mn ions in the well corresponds to the larger splitting of 
resonant tunneling levels and, consequently, to the better 
localization of peaks and current polarization). For 
example, increasing the barrier width from L1 = L2 = 
50 Å to L1 = L2 = 90 Å does not change the location of 
the corresponding peaks of the current, but decreases its 
maximum value more than by a factor of five. 
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Parameters of the system are chosen to obtain the 
maximum polarization while minimizing the barrier 
deformation caused by the external electric field. 

4. The charge carrier polarization 

The spin filter described above allows the passage of a 
highly polarized current of electrons. But the interaction 
of electrons with the surrounding material leads to the 
electron relaxation and to a decrease of the spin 
polarization. The distance, at which the spin polarization 
remains significant, is determined by the properties of a 
crystal, such as the spin relaxation time, the electron 
mobility, and so on. The degree of polarization is the 
relative difference of concentrations of electrons with 
different spin projections, 

,=
−+

−+

+
−

nn
nnP  (5) 

where +n  and −n  are the concentrations of electrons 

with 
2
1=zs  and 

2
1= −zs , respectively. Spin-polarized 

electrons injected into a semiconductor lose the spin 
polarization degree due to various spin relaxation 
processes. Here, we suppose that the equilibrium state 
with respect to energy is established more faster than 
that with respect to spin. Thus, the density of electrons 
with different spin orientations and their polarization can 
be calculated in the two-component drift-diffusion 
transport model [19] and can be described by the 
continuity equations  
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where ±τ  and mτ  are the relaxation times for electrons 

with the spin 
2
1=zs  and 

2
1= −zs , respectively, the 

time of the electron transition from the state with spin 

2
1= −zs  into the one with 

2
1= −zs  and vice versa. We 

note that the current density of electrons with different 

spin polarizations 
dz
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DeEnej ±

±± +µ= , where D is 

the diffusion coefficient, µ is the electron mobility and 
eTkD B /= µ . In the steady state, we have the system of 

equations  
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where −+ + nnn =  and −+ − nnp = . According to the 
equation for the electron current density, the boundary 
conditions for the total concentration and for the 
difference of electron concentrations take the form 
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where the origin of coordinates z = 0 is located at the 
external boundary of the second barrier, and the values 

( )0+j  and ( )0−j  calculated above are the currents 
densities of electrons with different spin orientations 
after passing the second barrier. We suppose as well 
that, for a low temperature, the spin distribution at 
infinity is normal, ( ) 0≈∞p , and the total carrier 
concentration is equal to the donor concentration 
( ) DNn =∞ . 

In order to obtain a full system of kinetic equations 
for the electron density in the conduction band, Eq. (7) 
must be complemented by the Poisson equation 

( )nNe
dz
dE

−
εε 0

= . Both the Poisson equation and the 

equation for the total current give the equation for the 
electric field strength:  
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where ( )0= −+ + jjj  is the total current. The boundary 
conditions for the electric field strength are formulated 
according to the following physical considerations. We 
suppose that the electric field at the point z = 0 is 
continuous and is equal to the electric field inside the 
barriers which is determined by the voltage drop U on 
the inner layers of the structure 

( ) ( )21/=0 LdLUE ++ . On the other hand, the electric 
field at infinity is constant, so Eq. (9) gives 
( ) ( )DNejE µ∞ /= . Hence, the system of equations (7) 

and (9) with boundary conditions completely determines 
the spin polarization of the electrons in the layer placed 
after the last barrier. 

Figure 5 shows the dependences of spin and current 
polarizations on the distance from the boundary of the 
barrier for several values of the relaxation time and for 
the electron mobility µ = 10−2 m2s/V. The spin-lattice 
relaxation time depends on the sample conditions (the 
presence of impurities, the electron-phonon interaction, 
etc.) and can reach the nanosecond range in II-VI 
semiconductors [3, 20]. It is clearly seen that, for the 
given parameters, the electron spin polarization can 
exceed the value of 90 % and would decrease when the 
distance from the spin filter grows. The width of the 
layer with large spin polarization is determined, first of 
all, by the value of the electron spin relaxation time for 
the given system. 
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Fig. 5. Spin density and current density polarization degrees as 
a function of the distance from the boundary of a barrier. 
 

  
 

Fig. 6. Distance from the boundary of the barrier, at which the 
polarization of carriers decreases by e times as a function of 
the electron spin relaxation time at U = 0.022 V. 

 
Figure 6 demonstrates how the distance from the 

barrier, at which a high degree of polarization of carriers 
exists, depends on the electron spin relaxation time. In 
Fig. 6, ed  stands for the distance from the barriers, at 
which the polarization of carriers decreases by a factor of 
e, ( ) ( ) edPP e =/0 . Figures 5 and 6 indicate that the 
penetration depth of the polarization critically increases 
with the electron spin relaxation time. For the relaxation 
time exceeding 910− , the polarized region can spread for 
several microns. The calculations also showed that the 
penetration depth increases when the electron mobility 
grows. 

We also calculated the spin and current polarizations 
in a simpler one-barrier semimagnetic semiconductor spin 
filter. The magnetic properties of such a system are 
determined by the Cd1−xMnxTe layer that forms the 

barrier. For electrons with the spin projection 
2
1=zs  and 

2
1= −zs , the heights of the barrier in the magnetic field 

are different. The splitting of the barrier height leads to the 
splitting of the transition coefficient for electrons with 

different spin projections. Therefore, different values of 
the current for the different electron spin polarizations are 
obtained. In the case of a one-barrier spin filter, the 
current and carrier polarizations can reach considerable 
values close to 50 % that is less than that in the case of 
resonant tunneling. 

5. Conclusion 

We have studied the two-barrier resonant tunneling 
CdTe-based system with Mg ions in barriers and Mn 
ions in the well placed in the external electric and mag-
netic fields. The dependences of the polarization degree 
on the temperature, concentration of magnetic ions, the 
well width, and the doping level are determined. It is 
shown that, for certain values of the system parameters 
and the external field strengths, the polarization higher 
than 90 % can be obtained. The degree of carrier 
polarization was studied as a function of the distance 
from the barrier. It is shown that the distance, at which a 
high degree of the polarization of carriers (above 50 %) 
is maintained, can reach several microns. 
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