Semiconductor Physics, Quantum Electronics and Optoelectronics, 11 (4) P. 337-341 (2008).
DOI: https://doi.org/10.15407/spqeo11.04.337


References

1. H. Stark, Physics of colloidal dispersions in nematic liquid crystals // Phys. Repts 351, p. 387- 474 (2001).
https://doi.org/10.1016/S0370-1573(00)00144-7
2. I. Dierking, G. Scalia, P. Morales, D. LeClere, Aligning and reorienting carbon nanotubes by nematic liquid crystals // Adv. Mater. 16, No. 11, p. 865-869 (2004).
https://doi.org/10.1002/adma.200306196
3. I. Dierking, G. Scalia, P. Morales, Liquid crystalcarbon nanotube dispersions // J. Appl. Phys. 97(4), 044309 (2005).
https://doi.org/10.1063/1.1850606
4. W. Lee, C.-Yu. Wang, and Yu-C. Shih, Effects of carbon nanosolids on the electro-optical properties of a twisted nematic liquid-crystal host // Appl. Phys. Lett. 85 (4), p. 513-515 (2004).
https://doi.org/10.1063/1.1771799
5. W. Lee and Yu-C. Shih, Effects of carbonnanotube doping on the performance of a TN- LCD // Journal of the SID, 13(9), p. 743-747 (2005).
https://doi.org/10.1889/1.2080511
6. C.Y Huang, C.Y. Hu, H.C. Pan and K.Y. Lo, Electrooptical responses of carbon nanotubedoped liquid crystal devices // Jpn. J. Appl. Phys. 44 (11), p. 8077-8081 (2005).
https://doi.org/10.1143/JJAP.44.8077
7. In-Su Baik, S.Y. Jeon, S.H. Lee, K.A. Park, S.H. Jeong, K.H. An, Y.H. Lee, Electrical field effect on carbon nanotubes in a twisted nematic liquid crystal cell // Appl. Phys. Lett. 87, 263110 (2005).
https://doi.org/10.1063/1.2158509
8. L. Dolgov, O. Yaroshchuk, M. Lebovka, Effect of electro-optical memory in the liquid crystals doped with carbon nanotubes // Accepted for Mol. Cryst. Liq. Cryst.
9. A. Dawid, Z. Gburski, Dielectric relaxation of 4- cyano-4-n-pentylbiphenyl (5CB) thin layer adsorbed on carbon nanotube - MD simulation // J. Non-cryst. Solids 353, p. 4339-4343 (2007).
https://doi.org/10.1016/j.jnoncrysol.2007.02.072
10. N. Lebovka, T. Dadakova, L. Lysetskiy, O. Melezhyk, G. Puchkovska, T. Gavrilko, J. Baran, M. Drozd, Phase transitions, intermolecular interactions and electrical conductivity behavior in carbon multiwalled nanotubes/nematic liquid crystal composites // Accepted for J. Mol. Struct.
11. A.V. Koval'chuk, Low frequency spectroscopy as investigation method of the electrode-liquid interface // Functional Materials 5(3), p. 428-430 (1998).
12. A.V. Koval'chuk, Relaxation processes and charge transport across liquid crystal-electrode interface // J. Phys.: Condens. Mater. 13(24), p. 10333-10345 (2001).
https://doi.org/10.1088/0953-8984/13/46/306
13. O. Yaroshchuk, A. Kovalchuk, R. Kravchuk, The interfacial dipole-to-dipole interaction as a factor of polar anchoring in the cells with planar liquid crystal alignment // Mol. Cryst. Liq. Cryst. 438, p. 195-204 (2005).
https://doi.org/10.1080/15421400590958151
14. A. Melezhyk, Yu. Sementsov, V. Yanchenko, Synthesis of porous carbon nanofibers on catalysts fabricated by the mechanochemical method // Zhurnal prikladnoy khimii 78(7), p. 924-930 (2005) (in Russian).
https://doi.org/10.1007/s11167-005-0421-x
15. Carbon Nanotubes: Properties and Applications, ed. by M.J. O'Connell. Teylor and Francis, London, 2006.
16. A.J. Twarowski, A.C. Albrecht, Depletion layer in organic films: Low frequency measurements in polycrystalline tetracene // J. Chem. Phys. 20(5), p. 2255-2261 (1979).
https://doi.org/10.1063/1.437729
17. A.V. Koval'chuk, Low-frequency dielectric relaxation at the tunnel charge transfer across the liquid/electrode interface // Functional Materials 8(4), p. 690-693 (2001).
18. N.F. Mott, E.A. Davis, Electronic Processes in Non-crystalline Materials. Clarendon Press, Oxford, 1971.
19. D Stauffer, A. Aharony, Introduction to Percolation Theory, Second ed. London, Washington DC, 1992.
20. W. Haase, S. Wrobel, Relaxation Phenomena. Springer, New York, 2003.
https://doi.org/10.1007/978-3-662-09747-2
21. K.A. Park, S.M. Lee, S.H. Lee, and Y.H. Lee, Anchoring a liquid crystal molecule on a singlewalled carbon nanotube // J. Phys. Chem. C 111, p. 1620-1624 (2007).
https://doi.org/10.1021/jp0659960