Semiconductor Physics, Quantum Electronics and Optoelectronics, 11 (4) P. 352-355 (2008).
DOI: https://doi.org/10.15407/spqeo11.04.352


References

1. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo and F. Priolo, Optical gain in silicon nanocrystals // Nature 408, p. 440-444 (2000).
https://doi.org/10.1038/35044012
2. G.G. Ross et al., Effect of implanted Si concentration on the Si nanocrystal size and emitted PL spectrum // Nuclear Instruments and Methods in Physics Research B 256, p. 211-215 (2007).
https://doi.org/10.1016/j.nimb.2006.12.005
3. B.M. Romanyuk et al., Photoluminescense of nanoclusters in SiO2 layers implanted with silicon and carbon ions // Optoelektronika i poluprovodnikovaya tekhnika 42, p. 96-102 (2007) (in Russian).
4. U.S. Sias, M. Beha, H. Boudinov, E.C. Moreira, Influence of the implantation and annealing parameters on the photoluminescence produced by Si hot implantation // Nuclear Instruments and Methods in Physics Research B 257, p. 51-55 (2007).
https://doi.org/10.1016/j.nimb.2006.12.114
5. N. Daldosso et al., Silicon nanocrystal formation in annealed silicon-rich silicon oxide films // J. Appl. Phys. 101, 113510 (1-7) (2007).
https://doi.org/10.1063/1.2740335
6. L. Dal Negro et al., Light-emitting silicon-rich nitride system and photonic structures // J. Experim. Nanoscience 1(1), p. 29-50 (2006).
https://doi.org/10.1080/17458080500469310
7. J. Zhao et al., Short-wavelength photoluminescence from silicon and nitrogen coimplanted SiO2 films // Appl. Phys. Lett. 74 (10), p. 1403-1405 (1999).
https://doi.org/10.1063/1.123564
8. D. Pacifici et al., Erbium-doped Si nanocrystals: optical properties and electroluminescent devices // Physica E 16, p. 331-340 (2003).
https://doi.org/10.1016/S1386-9477(02)00615-X
9. B. Garrido Fernandez et al., Influence of average size and interface passivation on the spectral emission of Si nanocrystals embedded in SiO2 // J. Appl. Phys. 91(2), p. 798-807 (2002).
https://doi.org/10.1063/1.1423768
10. S. Cheylan and R.G. Elliman, Effect of particle size on the photoluminescence from hydrogen passivated Si nanocrystals in SiO2 // Appl. Phys. Lett. 78(13), p. 1912-1914 (2001).
https://doi.org/10.1063/1.1357450
11. Xiaochun Wu et al., Kinetic oscillations of red photoluminescence from nanocrystalline Si/SiO2 films // Appl. Phys. Lett. 77(5), p. 645-647 (2000).
https://doi.org/10.1063/1.127072
12. M. Lopez et al., Elucidation of the surface passivation role on the photoluminescence emission yield of silicon nanocrystals embedded in SiO2 // Appl. Phys. Lett. 80(9), p. 1637-1639 (2002).
https://doi.org/10.1063/1.1456970
13. A.R. Wilkinson and R.G. Elliman, The effect of annealing environment on the luminescence of silicon nanocrystals in silica // J. Appl. Phys. 96(7), p. 4018-4020 (2004).
https://doi.org/10.1063/1.1789265
14. U.S. Sias et al., The post-annealing environment effect on the photoluminescence recovery of ionirradiated Si nanocrystals // Nuclear Instruments and Methods in Physics Research B 257, p. 6-10 (2007).
https://doi.org/10.1016/j.nimb.2006.12.112
15. X.X. Wang et al., Origin and evolution of photoluminescence from Si nanocrystals embedded in a SiO2 matrix // Phys. Rev. B 72, 195313 (1-6) (2005).
16. G. Nicotra, G. Franzo, C. Spinella, Evaluation of the excess and clustered silicon profiles in a silicon implanted SiO2 layer // Nuclear Instruments and Methods in Physics Research B 257, p. 104-107 (2007).
https://doi.org/10.1016/j.nimb.2006.12.160
17. V.G. Litovchenko, A.P. Gorban, Bases of Physics of the Metal-Insulator-Semiconductor Microelectronic Systems. Naukova Dumka Publ., Kiev, 1978, p. 316 (in Russian).