Semiconductor Physics, Quantum Electronics and Optoelectronics, 11 (4) P. 360-363 (2008).
DOI:
https://doi.org/10.15407/spqeo11.04.360
References
1. E.M. Dianov, A.M. Prokhorov, Medium-power CW Raman fiber lasers // IEEE J. Sel. Top. Quantum Electron. 6(6), p. 1022-1028 (2000). https://doi.org/10.1109/2944.902151 | | 2. M.N. Islam, Raman amplifiers for telecommunications // IEEE J. Sel. Top. Quantum. Electron. 8(3), p. 548-559 (2002). https://doi.org/10.1109/JSTQE.2002.1016358 | | 3. R.H. Stolen, C. Lee, and R.K. Jain, Development of the stimulated Raman spectrum in single-mode silica fibres // J. Opt. Soc. Amer. B 1, p. 652 (1984). https://doi.org/10.1364/JOSAB.1.000652 | | 4. P.A. Korotkov, G.S. Felinskyi, Fiber Raman CW lasers // Rev. Ukr. J. Phys. 3(2), p. 126-150 (2006). | | 5. G.P. Agrawal, Nonlinear Fiber Optics, Second ed. Academic., San Diego, CA, 1995. | | 6. K. Rottwitt, J. Bromage, A.J. Stentz, L. Leng, M.E. Lines, and H. Smith, Scaling of the Raman gain coefficient: applications to germanosilicate fibres // J. Lightwave Techn. 21(7), p. 1652-1662 (2003). https://doi.org/10.1109/JLT.2003.814386 | | 7. G.S. Felinskyi, Spectroscopic multiple-vibrationalmodelling of Raman gain for FRA design // Proc. SPIE/Ukraine 6(1-6), p. 418-426 (2006). | | 8. G.S. Felinskyi, P.A. Korotkov, Full transparency regime for optical transmission and lasing threshold in silica fibers due to nonlinear Raman interaction // Proc. 9th Intern. Conf. on Laser and Fiber-Optical Networks Modeling (LFNM 2008), Oct. 2-4, Alushta, Crimea, Ukraine, p. 79-81 (2008). https://doi.org/10.1109/LFNM.2008.4670355 | |
|
|