Semiconductor Physics, Quantum Electronics and Optoelectronics, 11 (4) P. 370-380 (2008).
DOI: https://doi.org/10.15407/spqeo11.04.370


References

1. D. Yadlovker and S. Berger, Uniform orientation and size of ferroelectric domains // Phys. Rev. B 71, 184112 (2005).
https://doi.org/10.1103/PhysRevB.71.184112
2. G. Geneste, E. Bousquest, J. Junquera, and P. Chosez, Finite-size effects in BaTiO3 nanowires // Appl. Phys. Lett. 88, 112906 (2006).
https://doi.org/10.1063/1.2186104
3. Y. Luo, I. Szafraniak, N.D. Zakharov, V. Nagarajan, M. Steinhart, R.B. Wehrspohn, J.H. Wendroff, R. Ramesh, M. Alexe, Nanoshell tubes of ferroelectric lead zirconate titanate and barium titanate // Appl. Phys. Lett. 83, p. 440 (2003).
https://doi.org/10.1063/1.1592013
4. D. Morrison, L. Ramsay, and J.F. Scott, High aspect ratio piezoelectric strontium-bismuthtantalate nanotubes // J. Phys.: Condens. Matter 15, p. L527 (2003).
https://doi.org/10.1088/0953-8984/15/33/103
5. F.D. Morrison Y. Luo, I. Szafraniak, et al., Ferroelectric nanotubes // Rev. Adv. Mater. Sci. 4, p. 114 (2003).
6. M.E. Lines and A.M. Glass, Principles and Applications of Ferroelectrics and Related Phenomena. Clarendon Press, Oxford, 1977.
7. L.D. Landau and E.M. Lifshits, Electrodynamics of Continuous Media. Butterworth Heinemann, Oxford, 1980.
8. D.R. Tilley, Finite-size effects on phase transitions in ferroelectrics, In: Ferroelectric Thin Films, ed. C. Paz de Araujo, J.F. Scott, and G.W. Teylor. Gordon and Breach, Amsterdam, 1996.
9. C.L. Wang and S.R.P. Smith, Landau theory of the size-driven phase transition in ferroelectrics // J. Phys.: Condens. Matter 7, p. 7163 (1995).
https://doi.org/10.1088/0953-8984/7/36/006
10. I. Rychetsky and O. Hudak, The ferroelectric phase transition in small spherical particles // J. Phys.: Condens. Matter 9, p. 4955 (1997).
https://doi.org/10.1088/0953-8984/9/23/019
11. D.D. Fong, G.B. Stephenson, S.K. Streiffer, J.A. Eastman, O. Auciello, P.H. Fuoss, and C. Thompson, Ferroelectricity in ultrathin perovskite films // Science 304, p. 1650 (2004).
https://doi.org/10.1126/science.1098252
12. S.K. Mishra and D. Pandey, Effect of particle size on the ferroelectric behaviour of tetragonal and rhombohedral Pb(ZrxTi1-x)O3 ceramics and powders // J. Phys.: Condens. Matter 7, p. 9287 (1995).
https://doi.org/10.1088/0953-8984/7/48/018
13. K. Uchino, E. Sadanaga, and T. Hirose, Dependence of the crystal structure on particle size in barium titanate // J. Amer. Ceram. Soc. 72, p. 1555 (1989).
https://doi.org/10.1111/j.1151-2916.1989.tb07706.x
14. M.D. Glinchuk and A.N. Morozovska, Effect of surface tension and depolarization field on ferroelectric nanomaterials properties // Phys. status solidi (b) 238, p. 81 (2003).
https://doi.org/10.1002/pssb.200301755
15. H. Huang, C.Q. Sun, Zh. Tianshu and P. Hing, Grain-size effect on ferroelectric Pb(Zr1-xTix)O3 solid solutions induced by surface bond contraction // Phys. Rev. B 63, 184112 (2001).
https://doi.org/10.1103/PhysRevB.63.184112
16. E.D. Mishina, K.A. Vorotilov, V.A. Vasil'ev, A.S. Sigov, N. Ohta, and S. Nakabayashi, Porous silicon-based ferroelectric nanostructures // Zhurnal. Experim. Teor. Fiziki 95 (3), p. 502-504 (2002) (in Russian).
https://doi.org/10.1134/1.1513823
17. R. Poyato and B.D. Huey and N.P. Padture, Local piezoelectric and ferroelectric responses in nanotube-patterned thin films of BaTiO3 synthesized hydrothermally at 200 °C // J. Mater. Res. 21, 547 (2006).
https://doi.org/10.1557/jmr.2006.0069
18. A.N. Morozovska, E.A. Eliseev, and M.D. Glinchuk, Ferroelectricity enhancement in confined nanorods: Direct variational method // Phys. Rev. B 73, 214106 (2006).
https://doi.org/10.1103/PhysRevB.73.214106
19. A.N. Morozovska, E.A. Eliseev, and M.D. Glinchuk, Size effects and depolarization field influence on the phase diagrams of cylindrical ferroelectric nanoparticles // Physica B 387, p. 358 (2007).
https://doi.org/10.1016/j.physb.2006.04.030
20. A.N. Morozovska, M.D. Glinchuk, and E.A. Eliseev, Ferroelectricity enhancement in ferroelectric nanotubes // Phase Transitions 80, No. 1-2, p. 71-77 (2007).
https://doi.org/10.1080/01411590601092746
21. J. Freund, J. Halbritter, and J.K.H. Horber, How dry are dried samples? Water adsorption measured by STM // Microsc. Res. Tech. 44, p. 327-338 (1999).
https://doi.org/10.1002/(SICI)1097-0029(19990301)44:5<327::AID-JEMT3>3.0.CO;2-E
22. R. Kretschmer and K. Binder, Surface effects on phase transition in ferroelectrics and dipolar magnets // Phys. Rev. B 20, p. 1065 (1976).
https://doi.org/10.1103/PhysRevB.20.1065
23. J.C. Niepce, Permittivity of fine grained BaTiO3 // Electroceramics 4, No. 5-7, p. 29 (1994).
24. P. Perriat, J.C. Niepce, G. Gaboche, Thermodynamic consideration of the grain size dependence of materials properties // J. Thermal Analysis 41, p. 635-649 (1994).
https://doi.org/10.1007/BF02549339
25. M.D. Glinchuk, A.N. Morozovska, Radiospectroscopy and dielectric properties of nanomaterials // Fizika tverdogo tela 45 (8), p. 1510-1518 (2003) (in Russian).
26. V.A. Shchukin and D. Bimberg, Spontaneous ordering of nanostructures on crystal surfaces // Reviews of Modern Physics 71 (4), p. 1125-1171 (1999).
https://doi.org/10.1103/RevModPhys.71.1125
27. S.V. Kalinin, E.A. Eliseev, and A.N. Morozovska, Materials contrast in piezoresponse force microscopy // Appl. Phys. Lett. 88, р. 232904-1-3 (2006).
https://doi.org/10.1063/1.2206992
28. A.N. Morozovska, S.V. Svechnikov, The influence of size effects on thin films local piezoelectric response // Semiconductor Physics, Quantum Electronics & Optoelectronics 10 (4), p. 36-41 (2007).
https://doi.org/10.15407/spqeo10.04.036
29. L.D. Landau and E.M. Lifshitz, Theory of Elasticity. Theoretical Physics, Vol. 7. Butterworth-Heinemann, Oxford, U.K., 1998.
30. N.A. Pertsev, A.G. Zembilgotov, and A.K. Tagantsev, Effect of mechanical boundary conditions on phase diagrams of epitaxial ferroelectric thin films // Phys. Rev. Lett. 80 (9), p. 1988-1991 (1998).
https://doi.org/10.1103/PhysRevLett.80.1988
31. J.S. Speck, and W. Pompe, Domain configurations due to multiple misfit relaxation mechanisms in epitaxial ferroelectric thin films. I. Theory // J. Appl. Phys. 76 (1), p. 466-476 (1994).
https://doi.org/10.1063/1.357097
32. B.J. Rodriguez, S. Jesse, A.P. Baddorf, and S.V. Kalinin, High resolution electromechanical imaging of ferroelectric materials in a liquid environment by piezoresponse force Microscopy // Phys. Rev. Lett. 96 (23), 237602 (2006).
https://doi.org/10.1103/PhysRevLett.96.237602
33. A.N. Morozovska, S.V. Svechnikov, E.A. Eliseev, and S.V. Kalinin, Extrinsic size effect in piezoresponse force microscopy of thin films // Phys. Rev. B 76 (5), 054123-1-5 (2007).
https://doi.org/10.1103/PhysRevB.76.054123
34. A.N. Morozovska, E.A. Eliseev, G.S. Svechnikov, V. Gopalan, and S.V. Kalinin, Effect of the intrinsic width on the piezoelectric force microscopy of a single ferroelectric domain wall // J. Appl. Phys. 103 (12), 124110-1-8 (2008).
https://doi.org/10.1063/1.2939369
35. A.N. Morozovska, E.A. Eliseev, S.L. Bravina, and S.V. Kalinin, Resolution function theory in piezoresponse force microscopy: domain wall profile, spatial resolution, and tip calibration // Phys. Rev. B 75 (17), 174109-1-18 (2007).
https://doi.org/10.1103/PhysRevB.75.174109
36. A.N. Morozovska, S.V. Svechnikov, E.A. Eliseev, S. Jesse, B.J. Rodriguez, S.V. Kalinin, Piezoresponse Force Spectroscopy of FerroelectricSemiconductor Materials // J. Appl. Phys. 102 (11), 114108-1-14 (2007).
https://doi.org/10.1063/1.2818370
37. A.N. Morozovska, S.V. Kalinin, E.A. Eliseev, V. Gopalan, and S.V. Svechnikov, The interaction of an 180-degree ferroelectric domain wall with a biased scanning probe microscopy tip: effective wall geometry and thermodynamics in GinzburgLandau-Devonshire theory // Phys. Rev. B 78 (12), 125407-1-11 (2008).
https://doi.org/10.1103/PhysRevB.78.125407