Semiconductor Physics, Quantum Electronics and Optoelectronics, 11 (4) P. 370-380 (2008).
DOI:
https://doi.org/10.15407/spqeo11.04.370
References
1. D. Yadlovker and S. Berger, Uniform orientation and size of ferroelectric domains // Phys. Rev. B 71, 184112 (2005). https://doi.org/10.1103/PhysRevB.71.184112 | | 2. G. Geneste, E. Bousquest, J. Junquera, and P. Chosez, Finite-size effects in BaTiO3 nanowires // Appl. Phys. Lett. 88, 112906 (2006). https://doi.org/10.1063/1.2186104 | | 3. Y. Luo, I. Szafraniak, N.D. Zakharov, V. Nagarajan, M. Steinhart, R.B. Wehrspohn, J.H. Wendroff, R. Ramesh, M. Alexe, Nanoshell tubes of ferroelectric lead zirconate titanate and barium titanate // Appl. Phys. Lett. 83, p. 440 (2003). https://doi.org/10.1063/1.1592013 | | 4. D. Morrison, L. Ramsay, and J.F. Scott, High aspect ratio piezoelectric strontium-bismuthtantalate nanotubes // J. Phys.: Condens. Matter 15, p. L527 (2003). https://doi.org/10.1088/0953-8984/15/33/103 | | 5. F.D. Morrison Y. Luo, I. Szafraniak, et al., Ferroelectric nanotubes // Rev. Adv. Mater. Sci. 4, p. 114 (2003). | | 6. M.E. Lines and A.M. Glass, Principles and Applications of Ferroelectrics and Related Phenomena. Clarendon Press, Oxford, 1977. | | 7. L.D. Landau and E.M. Lifshits, Electrodynamics of Continuous Media. Butterworth Heinemann, Oxford, 1980. | | 8. D.R. Tilley, Finite-size effects on phase transitions in ferroelectrics, In: Ferroelectric Thin Films, ed. C. Paz de Araujo, J.F. Scott, and G.W. Teylor. Gordon and Breach, Amsterdam, 1996. | | 9. C.L. Wang and S.R.P. Smith, Landau theory of the size-driven phase transition in ferroelectrics // J. Phys.: Condens. Matter 7, p. 7163 (1995). https://doi.org/10.1088/0953-8984/7/36/006 | | 10. I. Rychetsky and O. Hudak, The ferroelectric phase transition in small spherical particles // J. Phys.: Condens. Matter 9, p. 4955 (1997). https://doi.org/10.1088/0953-8984/9/23/019 | | 11. D.D. Fong, G.B. Stephenson, S.K. Streiffer, J.A. Eastman, O. Auciello, P.H. Fuoss, and C. Thompson, Ferroelectricity in ultrathin perovskite films // Science 304, p. 1650 (2004). https://doi.org/10.1126/science.1098252 | | 12. S.K. Mishra and D. Pandey, Effect of particle size on the ferroelectric behaviour of tetragonal and rhombohedral Pb(ZrxTi1-x)O3 ceramics and powders // J. Phys.: Condens. Matter 7, p. 9287 (1995). https://doi.org/10.1088/0953-8984/7/48/018 | | 13. K. Uchino, E. Sadanaga, and T. Hirose, Dependence of the crystal structure on particle size in barium titanate // J. Amer. Ceram. Soc. 72, p. 1555 (1989). https://doi.org/10.1111/j.1151-2916.1989.tb07706.x | | 14. M.D. Glinchuk and A.N. Morozovska, Effect of surface tension and depolarization field on ferroelectric nanomaterials properties // Phys. status solidi (b) 238, p. 81 (2003). https://doi.org/10.1002/pssb.200301755 | | 15. H. Huang, C.Q. Sun, Zh. Tianshu and P. Hing, Grain-size effect on ferroelectric Pb(Zr1-xTix)O3 solid solutions induced by surface bond contraction // Phys. Rev. B 63, 184112 (2001). https://doi.org/10.1103/PhysRevB.63.184112 | | 16. E.D. Mishina, K.A. Vorotilov, V.A. Vasil'ev, A.S. Sigov, N. Ohta, and S. Nakabayashi, Porous silicon-based ferroelectric nanostructures // Zhurnal. Experim. Teor. Fiziki 95 (3), p. 502-504 (2002) (in Russian). https://doi.org/10.1134/1.1513823 | | 17. R. Poyato and B.D. Huey and N.P. Padture, Local piezoelectric and ferroelectric responses in nanotube-patterned thin films of BaTiO3 synthesized hydrothermally at 200 °C // J. Mater. Res. 21, 547 (2006). https://doi.org/10.1557/jmr.2006.0069 | | 18. A.N. Morozovska, E.A. Eliseev, and M.D. Glinchuk, Ferroelectricity enhancement in confined nanorods: Direct variational method // Phys. Rev. B 73, 214106 (2006). https://doi.org/10.1103/PhysRevB.73.214106 | | 19. A.N. Morozovska, E.A. Eliseev, and M.D. Glinchuk, Size effects and depolarization field influence on the phase diagrams of cylindrical ferroelectric nanoparticles // Physica B 387, p. 358 (2007). https://doi.org/10.1016/j.physb.2006.04.030 | | 20. A.N. Morozovska, M.D. Glinchuk, and E.A. Eliseev, Ferroelectricity enhancement in ferroelectric nanotubes // Phase Transitions 80, No. 1-2, p. 71-77 (2007). https://doi.org/10.1080/01411590601092746 | | 21. J. Freund, J. Halbritter, and J.K.H. Horber, How dry are dried samples? Water adsorption measured by STM // Microsc. Res. Tech. 44, p. 327-338 (1999). https://doi.org/10.1002/(SICI)1097-0029(19990301)44:5<327::AID-JEMT3>3.0.CO;2-E | | 22. R. Kretschmer and K. Binder, Surface effects on phase transition in ferroelectrics and dipolar magnets // Phys. Rev. B 20, p. 1065 (1976). https://doi.org/10.1103/PhysRevB.20.1065 | | 23. J.C. Niepce, Permittivity of fine grained BaTiO3 // Electroceramics 4, No. 5-7, p. 29 (1994). | | 24. P. Perriat, J.C. Niepce, G. Gaboche, Thermodynamic consideration of the grain size dependence of materials properties // J. Thermal Analysis 41, p. 635-649 (1994). https://doi.org/10.1007/BF02549339 | | 25. M.D. Glinchuk, A.N. Morozovska, Radiospectroscopy and dielectric properties of nanomaterials // Fizika tverdogo tela 45 (8), p. 1510-1518 (2003) (in Russian). | | 26. V.A. Shchukin and D. Bimberg, Spontaneous ordering of nanostructures on crystal surfaces // Reviews of Modern Physics 71 (4), p. 1125-1171 (1999). https://doi.org/10.1103/RevModPhys.71.1125 | | 27. S.V. Kalinin, E.A. Eliseev, and A.N. Morozovska, Materials contrast in piezoresponse force microscopy // Appl. Phys. Lett. 88, р. 232904-1-3 (2006). https://doi.org/10.1063/1.2206992 | | 28. A.N. Morozovska, S.V. Svechnikov, The influence of size effects on thin films local piezoelectric response // Semiconductor Physics, Quantum Electronics & Optoelectronics 10 (4), p. 36-41 (2007). https://doi.org/10.15407/spqeo10.04.036 | | 29. L.D. Landau and E.M. Lifshitz, Theory of Elasticity. Theoretical Physics, Vol. 7. Butterworth-Heinemann, Oxford, U.K., 1998. | | 30. N.A. Pertsev, A.G. Zembilgotov, and A.K. Tagantsev, Effect of mechanical boundary conditions on phase diagrams of epitaxial ferroelectric thin films // Phys. Rev. Lett. 80 (9), p. 1988-1991 (1998). https://doi.org/10.1103/PhysRevLett.80.1988 | | 31. J.S. Speck, and W. Pompe, Domain configurations due to multiple misfit relaxation mechanisms in epitaxial ferroelectric thin films. I. Theory // J. Appl. Phys. 76 (1), p. 466-476 (1994). https://doi.org/10.1063/1.357097 | | 32. B.J. Rodriguez, S. Jesse, A.P. Baddorf, and S.V. Kalinin, High resolution electromechanical imaging of ferroelectric materials in a liquid environment by piezoresponse force Microscopy // Phys. Rev. Lett. 96 (23), 237602 (2006). https://doi.org/10.1103/PhysRevLett.96.237602 | | 33. A.N. Morozovska, S.V. Svechnikov, E.A. Eliseev, and S.V. Kalinin, Extrinsic size effect in piezoresponse force microscopy of thin films // Phys. Rev. B 76 (5), 054123-1-5 (2007). https://doi.org/10.1103/PhysRevB.76.054123 | | 34. A.N. Morozovska, E.A. Eliseev, G.S. Svechnikov, V. Gopalan, and S.V. Kalinin, Effect of the intrinsic width on the piezoelectric force microscopy of a single ferroelectric domain wall // J. Appl. Phys. 103 (12), 124110-1-8 (2008). https://doi.org/10.1063/1.2939369 | | 35. A.N. Morozovska, E.A. Eliseev, S.L. Bravina, and S.V. Kalinin, Resolution function theory in piezoresponse force microscopy: domain wall profile, spatial resolution, and tip calibration // Phys. Rev. B 75 (17), 174109-1-18 (2007). https://doi.org/10.1103/PhysRevB.75.174109 | | 36. A.N. Morozovska, S.V. Svechnikov, E.A. Eliseev, S. Jesse, B.J. Rodriguez, S.V. Kalinin, Piezoresponse Force Spectroscopy of FerroelectricSemiconductor Materials // J. Appl. Phys. 102 (11), 114108-1-14 (2007). https://doi.org/10.1063/1.2818370 | | 37. A.N. Morozovska, S.V. Kalinin, E.A. Eliseev, V. Gopalan, and S.V. Svechnikov, The interaction of an 180-degree ferroelectric domain wall with a biased scanning probe microscopy tip: effective wall geometry and thermodynamics in GinzburgLandau-Devonshire theory // Phys. Rev. B 78 (12), 125407-1-11 (2008). https://doi.org/10.1103/PhysRevB.78.125407 | |
|
|