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Abstract. We consider the polar properties of the ferroelectric nanotubes within the 
framework of Landau-Ginzburg-Devonshire phenomenology. The approximate 
analytical expression for the paraelectric-ferroelectric transition temperature dependence 
on the radii of nanotube, polarization gradient, extrapolation length, elastic stresses and 
strains arising from surface tension and thermal expansion mismatch, and electrostriction 
coefficient was derived. We calculated effective local piezoresponse of the ferroelectric 
nanotube within decoupling approximation of electric and elastic problem. Obtained 
results explain the ferroelectricity conservation in Pb(Zr,Ti)O3 and BaTiO3 nanotubes 
observed by using Piezoelectric Force Microscopy.  
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1. Introduction 

Ferroelectric nanotubes and nanorods are actively studied 
in nano-physics and nano-technology [1-5]. In many cases 
they demonstrate such polar properties as remnant 
polarization [1] and local piezoelectric hysteresis [3-5].  

It is generally accepted, that the ferroelectric 
properties disappear under the particle size decreases 
below the critical one [6]. Actually, it is well known that 
depolarization electric field exists in the majority of 
confined ferroelectric systems [7] and causes the size-
induced ferroelectricity disappearance in thin films and 
spherical particles [8].  

However, the cylindrical geometry does not destroy 
ferroelectric phase (in contrast to size-induced 
paraelectric phase in spherical particles [9-15]), but 
sometimes the noticeable enhancement of ferroelectric 
properties appears [1-5, 16]. For instance, Yadlovker and 
Berger [1] reported about the spontaneous polarization 
enhancement up to 0.25-2 µC/cm2 and ferroelectric 
phase conservation in Rochelle salt nanorods. With the 
help of Piezoelectric Force Microscopy (PFM), 
Morrison et al. [4, 5] demonstrated that PbZr0.52Ti0.48O3 
(PZT) nanotubes (radius R = 500-700 nm, thickness 
h = 50-70 nm, length 50 µm) possesses rectangular 
shape of the local piezoelectric response hysteresis loop 
with effective remnant piezoelectric coefficient value 
compatible with the ones typical for PZT films. Also, the 

authors demonstrated that the ferroelectric properties of 
the free BaTiO3 nanotubes are perfect. Poyato et al. [17] 
with the help of PFM found that nanotube-patterned 
(“honeycomb”) BaTiO3 film of thickness 200-300 nm 
reveal ferroelectric properties. The inner diameter of the 
nanotubes ranged from 50 to 100 nm. Also, they 
demonstrated the existence of local piezoelectric and 
oriented ferroelectric responses, prior to the application 
of a dc field, in nanotubes-patterned BaTiO3 thin films 
on Ti substrates synthesized hydrothermally at 200 °C. 
The phenomenological description of ferroelectricity 
enhancement in cylindrical nanoparticles has been 
recently proposed [18-20]. 

In our consideration of ferroelectric nanotube, we 
suppose that a nanoparticle surface is covered with a 
charged layer consisted of the free carriers adsorbed 
from the ambient (e.g., air with definite humidity or 
pores filled with a precursor solution). For instance, a 
thin water layer condensates on the polar oxide surface 
in the air with humidity 20-50 % [21]. The surface 
charges screen the surrounding template (usually Si or 
alumina porous matrix [1, 16] or regular 2D photonic 
crystal [3-5]) from the nanoparticle electric field, but the 
depolarization field inside the particle is caused by 
inhomogeneous polarization distribution. Thus, one 
could calculate the depolarization field inside a 
cylindrical nanoparticle under the short-circuit 
conditions proposed by Kretschmer and Binder [22].  
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For the case when a liquid precursor of ferroelectric 
(e.g. RS, PZT, SBT or BTO) filled the porous template 
by capillary effects [1], the uniform stress inside the 
pores is caused by surface tension [18]. During the 
following annealing both the thermal stresses and misfit 
strain on the tube-pore interface usually appear. In most 
of cases the stress causes the thin strained layer (“shell”) 
on the tube-pore interface. For instance, Luo et al. [3] 
and Morrison et al. [4, 5] reported about amorphous PZT 
layer of thickness ∆h ≈ 5-20 nm that clamped the 
nanotube crystalline “core”. The shell may be partially 
removed by selective etching. 

Using the experimental background, we modified 
the core-and-shell model of spherical ferroelectric 
nanoparticles proposed earlier by Niepce et al. [23, 24] 
and Glinchuk et al. [25] for the description of 
ferroelectric nanotubes polar properties. Firstly, we 
obtained the solution of elastic problem for the stress 
distribution inside the tube covered with thin strained 
shell. Then the polarization distribution inside the core 
was obtained and approximate analytical expression for 
paraelectric-ferroelectric transition temperature 
dependence on the nanotube thickness and radius, 
effective stress, polarization gradient and electrostriction 
coupling coefficients was derived. Note that the stress is 
caused by the particle surface clamping by template, i.e. 
it is related to surface tension, thermal expansion and 
mismatch strain [26]. We proved that the reason of the 
polar properties enhancement and conservation in 
ferroelectric nanotubes is the stress coupled with 
polarization via electrostriction effect under the strong 
decrease of depolarization field with tube length 
increase. Within decoupling approximation of electric 
and elastic problem [27, 28], we calculated the tube 
PFM response and compared calculations with available 
experimental data. 

2. Free energy of a nanotube in the core  
and shell model 

Let us consider the ferroelectric cylindrical nanotube of 
outer radius Ro, inner radius Ri, thickness h = Ro – Ri and 
height l (see Fig. 1). The tube “core” of thickness h – ∆h 
is covered with thin amorphous “shell” of thickness 
∆h << h. The core polarization P3 is oriented along z-
axes. The external electric field is ( )0,0,0 E=E .  

For the case when a liquid precursor of ferroelectric 
filled the porous template by capillary effects, the 
uniform stress ijoij p δ−=σ  is caused by surface tension 
po = 2µ/Ro [18], where the coefficient µ  could be related 
to the effective surface tension. During the following 
thermal annealing the cubic structured or even 
amorphous shell layer of thickness ∆h << Ro appears at 
the nanotube-template interface. The nanotube 
crystalline core is strained allowing for the thermal 
expansion and growth deformations as well as the 
surface tension frozen up inside the shell. Even after the 

template removal, the internal strain ijtij uu δ=  is 
different inside core and shell. Namely, the shell strain 

s
tu  is determined by the effective surface tension po, 

growth deformation ug and thermal expansion during 
annealing at temperature Ta, i.e. 

( ) g
s
io

s
t uTsspu +∆ϑ++−= 1211 2 , whereas the core 

strain is determined by the thermal expansion only, i.e. 
Tu c

i
c
t ∆= ϑ  (here s11 and s12 are the elastic compliances, 
c
iϑ  and s

iϑ  are the linear temperature expansion 
coefficients of the tube core and shell, ∆T = T – Ta is the 
temperature change, see e.g. [29, 30]). The difference 

s
t

c
t uuu −=∆  determines the core stress c
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The Euler-Lagrange equation for the polarization 
can be obtained by the variation on polarization of the 
free energy functional G = GV + GS, consisting of the 
bulk part GV and the surface one GS. The bulk part GV 
acquires the form: 
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Material coefficients δ > 0 and γ > 0, coefficient 
β < 0 for the first order phase transitions or β > 0 for the 
second order ones. The depolarization field is denoted 
by dE3 . The coefficients αT(T) and βR is renormalized by 

elastic stresses c
iiσ  as 
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Fig. 1. (a) Cross-section of the ferroelectric nanotube with 
“shell” of thickness ∆h and “core” of thickness h – ∆h. (b) 
Geometry of calculations in cylindrical coordinates 
{ρ, ψ, z}. 
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Here, parameters TC and Qij are respectively the 
Curie temperature and electrostriction coefficient of the 
bulk material; αT is proportional to the inverse Curie 
constant.  

Note that under the condition Ro,i → ∞ the 
renormalization given by Eqs. (3)-(4) coincides with the 
ones obtained for thin strained films by Pertsev et al. 
[30] allowing for stress relaxation [31], namely 

( )
h
h

ss
uh ∆
+
∆

≈σ
1211

, here ∆h could be related with 

characteristic distance hd of stress relaxation and 
∆u → um. In other words, we obtained that the stress 
relaxation occurs inside the shell. When ∆h → 0 the 
nanotube crystalline core appeared almost unstrained, 
i.e. σ ≈ 0. 

The surface part of the polarization-dependent free 
energy GS is thought to be proportional to square of 
polarization on the particle surface S, namely 

∫ λ
δ

=
S

SS PdsG 2

2
 (λ is the extrapolation length [8, 9]). 

The considered nanotube has upper and bottom surfaces 
z = l / 2, z = –l / 2 and sidewalls ρ = Ri, ρ = Ro – ∆h, so 
its surface energy GS acquires the form: 
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We introduced longitudinal and lateral 
extrapolation lengths λb ≠ λS. Hereinafter, we regard 
these extrapolation lengths positive.  

Variation of the free energy expression δG / δP3 = 0 
yields the Euler-Lagrange equations with the boundary 
conditions on the tube faces z = ±l / 2 and the sidewalls 
ρ ≈ Ro,i. Under the presence of lattice pinning of viscous 
friction type, the polarization distribution should be 
found from Landau-Khalatnikov equation δG / δP3 = –
Γ ∂ P3 /∂ t, where Γ in kinetic coefficient. Along with the 
Poisson equation for the depolarization field 
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The polarization distribution in the ferroelectric 
phase should be found by direct variational methods 
allowing for possible polydomain states appearance in 
confined particles. At (λS / Ro) << 1 an exact series for 
the polarization and depolarization field distributions can 
be obtained [18]. The inequality (λS / Ro) << 1 is valid 
for typical extrapolation lengths λS = 0.3-5 nm and radii 
Ro = 30-500 nm. Substituting the series for 
depolarization field and polarization into the free energy 
G and integrating over nanoparticle volume, we obtained 
the free energy with renormalized coefficients for the 
average polarization. For infinite tubes and wires, the 
single-domain state is energetically preferable, since the 
depolarization field is absent and correlation energy is 
minimal for single-domain case. The depolarization field 
is highest for a single-domain nanotube, namely its 
upper estimation has the form: 

( )
( )

( ) ( ) .,2,

21
4,

3

2

2
3

2
01

3

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
ρ−ρ×

×
π+

π
−=ρ

∫
−

zPdz
l

zP

Rlk
zE

l

l

o

d

   (8) 

Hereinafter, k01(Ro,Ri) is the lowest root of the 

equation ( ) ( ) 0010010010010 =⎟⎟
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(J0(x) and N0(x) are Bessel and Neiman functions of zero 
order, respectively). It should be noted that the 
depolarization field is absent outside the particles in the 
framework of our model. Therefore, the interaction of 
such nanoparticles is practically absent due to the 
screening. Their composite can be considered as the 
assembly of independent particles. 
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For finite polydomain tubes, only numerical 
simulations have been performed. However, simple 
approximate analytical expression for the free energy 
renormalized coefficients has been obtained for the 
infinite single-domain tubes. We report the results 
below. 

3. Phase diagram of the long nanotubes 

We derived the interpolation for the paraelectric-
ferroelectric transition temperature TCR(Ro, Ri) of the 
long nanotubes (for l >> Ro depolarization field Ed → 0 
in accordance with Eq. (8)): 
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An expression for the stress σ(Ro, Ri) is given by 
Eqs (1). The first term in Eq. (9) is the bulk transition 
temperature, the second term is related to the coupling of 
stress with polarization via electrostriction effect, the 
third term is caused by correlation effects. The 
correlation term is always negative and thus only 
decreases the transition temperature, whereas the 
electrostriction term in Eq. (9) could be positive or 
negative depending on the sign of (Q11 + Q12)σ. Note that 
both signs of (Q11 + Q12) are possible for different 
ferroelectrics, however (Q11 + Q12) > 0 for most of the 
perovskite ferroelectrics. Below, we demonstrate that 
increasing of transition temperature and thus 
ferroelectric properties conservation or even 
enhancement is possible, when the stress is compressive 
(σ < 0) and depolarization field is small enough. 

Taking into account that the correlation radius at 
zero temperature is several (up to ten) lattice constants 

nm41~ −αδ CTT  (see, e.g., experimental data of 
Rodriguez et al. [32]) and using expression (1) for the 
stress, we introduced the parameters and dimensionless 
variables that correspond to the lattice constant units: 
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Using approximate formula 
( ) ( ) ( ) ( )( )xxxxxk π+−−−−π≈ 81411 2

01  for x → 1, 
where x = ri / ro one can write in dimensionless variables: 
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Let us make some estimations of the second and 
third terms in Eq. (11) for perovskites BaTiO3 and 
Pb(Zr,Ti)O3. Using parameters Q11 = 0.11 m4/C2, Q12 = –
0.043 m4/C2, TC = 400 K, αT = –7.4·10–5 K–1 (BaTiO3) 
and Q11 = 0.089 m4/C2, Q12 = –0.046 m4/C2, TC = 666 K, 
αT = –3·10–5 K–1 (PbZr0.5Ti0.5O3); s11 = 8·10–12 Pa, s12 = –
2.5·10–12 Pa, ∆u ~ 5·(10–3-10–2) for por-Si or Al2O3 
templates, µ = 0.5-5 N/m (see, e.g., Ref. [13]), we 
obtained that Rµ ~ 0.06-0.6, ≈mR 0.5-5 and ∆w ~ 0.2-
2, respectively. Hence, both terms are comparable with 
unity and their contributions should be calculated 
carefully for the material under consideration. 

The dependences of transition temperature 
TCR(w, ri, ro) on tube thickness w for the cases of 
compressed (Rm < 0, solid curves), unstrained (∆w = 0, 
dashed curves) and tensiled (Rm > 0, dotted curves) tubes 
are compared in Fig. 2a. Corresponding spontaneous 
polarization ( ) ( ) RR TTP βα−=3  temperature 
dependences are presented in Fig. 2b. It is clear that 
nanotube compression leads to the maximum Tmax > TC 
on transition temperature thickness dependence and to 
the corresponding enhancement of spontaneous 
polarization P3(T) > PS(T) in the temperature range 
T ≈ Tmax, whereas unstrained and tensiled nanotubes 
reveal monotonic dependences TCR(w, ri, ro) < TC with 
deteriorated polar properties P3(T) < PS(T). Let us 
underline that the height and sharpness temperature 
maximum observed for compressed tubes decreases 
under the decrease of shell layer thicknesses ∆w. 

For the important case of thin tubes (w << ri) one 
obtains from Eq. (11): 
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Under the condition Rm < 0, the second term tends 
to increase TCR, while the third one always decreases it. 
At Rm < 0, the competition between the contribution of 
strain effect represented by the second term and the 
correlation effect represented by the third one leads to 
the maximum appearance in TCR(w) dependence, 
namely: 
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For thin tubes, we also obtained simple analytical 
expressions for the critical radius at given temperature T: 
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Fig. 2. (a) Transition temperature via tube thickness w and (b) 
spontaneous polarization temperature dependence for tube 
thickness w = 7 calculated from Eq. (11) for RS = 4 nm, 
∆w = 0.5, Rµ = 0.5 (which corresponds to PZT 50/50 
parameters), ri = 0; 1; 200 (curves 1, 2, 3), Rm = –4 (solid 
curves), Rm = 0 (dashed curves), Rm = +4 (dotted curves). 
Dashed-dotted curves correspond to the bulk material with 
spontaneous polarization PS (T). 

 

Sign “+” before the radical in Eq. (14) corresponds 
to the both cases of unstrained, tensiled or compressed 
tubes (i.e., both signs of Rm), while both signs “±” have 
sense for compressed tubes (i.e. two roots may exist at 
Rm < 0) under the condition T > TC. 

Finally let us discuss the influence of quartic term 
renormalization βR given by Eq. (4) on nanotubes phase 
diagrams in the particular case of the first order phase 
transitions in bulk material, i.e. when β < 0. Since 
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2  in accordance with Eq. (4), the 

situation βR > 0 could appear at some tube thicknesses 
when ∆β > 0, i.e., the transition order in nanotube would 
be changed. This situation for PbTiO3 nanotubes phase 
diagrams in coordinates tube thickness-inner radius is 
demonstrated in Fig. 3 at room temperature and different 
stress signs (Rm < 0, Rm = 0, Rm > 0).  

For the chosen material parameters, compressed 
tubes phase diagrams (a) have the thinnest region of 
paraelectric phase (PE) and widest region of the second 
order ferroelectric phase (FE-II) in comparison with 
unstrained (b) and tensiled (c) tubes. 

4. Piezoelectric force microscopy response of 
ferroelectric nanotubes 

Recently Morrison et al. [4, 5] demonstrated that long 
Pb(Zr,Ti)O3 and BaTiO3 nanotubes possess perfect 
piezoelectric properties. For thin PbZr52Ti48O3 nanotube 
(outer diameter 700 nm, wall thickness about 70 nm, 
length 30 µm) they obtained rectangular hysteresis loop 
of effective piezoelectric response ( )Ud eff

33 . Poyato et al. 
[17] with the help of PFM found that nanotube-patterned 
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BaTiO3 films of thickness 200-300 nm reveal 
piezoelectric hysteresis. 

The effective vertical piezoresponse eff
33d  is 

determined by the vertical mechanical displacement 3u  
of ferroelectric sample surface caused by 
inhomogeneous electric field of a PFM probe biased 
under the voltage U, namely ( )Ud eff

33  = u3/U (see e.g. 

Refs. [33-35]). The local PFM response eff
33d  is 

proportional to the stress piezoelectric tensor coefficients 
( )rkljd  representing ferroelectric material properties 

convoluted with the appropriate elastic Green function 
( )ξ,rijG  [33-35]. Extending the results of Refs. [35, 37] 

for an empty tube embedded into non-piezoelectric 
matrix, we obtained that 

( )

( ) ( )
( ) ( )

( ) ).(,,,)(
,,,)(,,,,

,,ξ

,,
)(

333315
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32211
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321
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ϑ+×
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×
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∞∞

∞−

∞

∞−
 

  (15) 
The inhomogeneous electric field 

( ) kk xE ∂ϕ∂−=r  is produced by the PFM tip inside of 
the sample, kjmnc  are stiffness tensor components. Rather 

cumbersome integrals ( )νγ,,,,13 aRRt io  depend only on 
tube outer and inner radiuses, dielectric anisotropy 
coefficient 1133 εε=ϑ , Poisson ratio ν and probe 
electric field distribution and tip position a with respect 
to the tube (see Fig. 4a). In the approximation of 
effective point charge Q simulating the probe electric 
field, the distance between the sample surface and the 
effective point charge is 

33110 εεε= rd eQ
 (r0 is the 

probe apex curvature, εe is ambient permittivity, 
dQ ~ 10 nm). In accordance with Eq. (15), the effective 
piezoresponse eff

33d  polarization dependence is fully 
determined by piezoelectric coefficients averaged over 
the piezoresponse volume. The conventional 
relationships between piezoelectric coefficients 

miljklmijk PQd εε= 02  in Voigth notation acquire 

explicit form:  

33311033 2 PQd εε= ,    33312031 2 PQd εε= ,    

31144015 2 PQd εε= . (16) 

ijQ  is electrostriction tensor components in the Voigth 
notation. 

In Table 1, we summarized calculated values of 

thermodynamic coercive field RRcE βα−= 272 3 , 
spontaneous polarization PS, dielectric permittivity ε33 at 
room temperature, critical thickness hcr and Curie 
temperature TC for compressed (∆u < 0), unstrained 
(∆u = 0) and tensiled (∆u > 0) PZT (50/50) nanotubes 
(first 3 rows) in comparison with bulk material (last 
row). In the last columns of the table, we presented the 
values of electric field 

( ) ( )
( ) 232

3311
2

33113311,
⎟
⎠
⎞⎜

⎝
⎛ +εε+ρ

εε+εε
≅ρ

Q

QQ
Q

dz

ddz
UzE  produced by 

the PFM tip with parameter dQ ≈ 25-50 nm on the tube 
surface z = 0 and in the depth z = dQ for the coercive 
voltage V5.2≈±

cU  measured experimentally. Material 
parameters used in calculations are given in Table 2 of 
Appendix A. 

 
It is clear that obtained values of EQ(0,0) is in order 

of magnitude higher than thermodynamic coercive field 

cE . The result is expectable, since in order to reverse 
the polarization inside the domain the PFM tip field 
should be higher than the coercive one not only just 
below the tip (z = 0, ρ = 0) but also inside the layer of 
depth about dQ (typical penetration depth of 
piezoresponse) [36, 37]. The values EQ(0, z = dQ) 
actually appeared ten times smaller than EQ(0,0) and in a 
good agreement with calculated cE  values. 

We compare the piezoresponse loop shape obtained 
for PbZr52Ti48O3 nanotube [4] and BaTiO3 honeycomb 
[17] with our theoretical calculations in Figs. 4. 

Table 1. 

Tubes PZT 
(50/50) 

Strain ∆u 
(%) 

Ec (kV/cm) PS (µC/cm2) ε33 

 

hcr 
(nm) 

TC (K) EQ(0, 0) 
(kV/cm) 

EQ(0, dQ) 
(kV/cm) 

–1 209 45 398 12.3 704 2060-1030 219-110 

0 167 42 474 16.8 645 1900-950 227-113 

Sizes: 
Ro=700 nm,  
h = 70 nm,  

∆h = 7 nm 
1 128 39 583 23.0 586 1700-850 232-116 

Bulk PZT (50/50) 228 50 375 — 666 2100-1050 214-107 
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5. Conclusions 

• We reported ferroelectricity conservation and 
enhancement in long perovskite nanotubes compressed 
by their shell in contrast to ferroelectricity degradation in 
perovskite nanotubes tensiled by their shell. We 
demonstrated the stress-induced change of the 
ferroelectric phase transition order. 

• The anisotropic stress as well as depolarization 
field decrease in long nanotubes are the keys to the 
ferroelectricity conservation. While the influence of 
depolarization field is obvious, the role of radial stress can 
be qualitatively understood as follows: although the radial 
stress conserves the inversion center, it leads to the short-
range forces strengthening in lateral direction (caused by 
the bond contraction) and their weakening in z-direction 
(caused by the bond elongation). As a result, the long-
range correlations become more pronounced in polar 
direction in comparison with the short-range forces.  

 
 

• We calculated the tube PFM response and 
demonstrated reasonable agreement with available 
experimental data. 
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Appendix A. Free energy with coefficients 
renormalized by elastic stresses 

Let us consider the nanotube with sidewalls covered 
with thin surface layers (shell). The free energy 
expansion on polarization ),0,0( 3P=P  and stress ijσ  
powers has the form: 
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Fig. 4. (a) Effective piezoresponse eff

33d  of PbZr52Ti48O3 nanotube (outer diameter 700 nm, wall thickness 90 nm, length 
about 30 µm) vs. applied voltage U. Squares are experimental data of Morrison et al. [4], solid curve is our fitting (13) for 

RS ≈ 7, ∆r = 5, Rµ = –5, 25.0=ϑ  and PZT material parameters. (b) Effective piezoresponse eff
33d  of nanotube-patterned 

BaTiO3 “honeycomb” (inner radius 50-100 nm, film thickness about 200-300 nm) vs. applied voltage U. Squares are 
experimental data of Poyato et al. [17], solid curve is our fitting at Ri = 50 nm, Ro = 62 nm, RS ≈ 6, ∆r = 5, Rµ = –5 and BaTiO3 

material parameters. Dimensionless frequency of external field ωΓ/(αTTC) = 0.15, nm1=δ . 

( )

( ) ( )
( ) ( )

∫ ∫ ∫
−

π

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

σ+σ+σ−σσ+σσ+σσ−

−σ+σ+σ−σ+σ+σ−

−σ+σ−σ−++

ρρψ=
2/

2/

2

0
2
12

2
13

2
234422333311221112

2
33

2
22

2
1111332211

2
3221112

2
33311

6
3111

4
311

2
31

2
1

2
1

l

l

R

R
tV

o

i

ss

su

PQPQPaPaPa

dddzG   (A.1) 



 
Semiconductor Physics, Quantum Electronics & Optoelectronics, 2008. V. 11, N 4. P. 370-380. 

 

 

© 2008, V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine 
 

377 

Subscripts 1, 2 and 3 denote Cartesian coordinates 
x, y and z, respectively. Hereinafter, we use Voigt 
notation or matrix notation when it is necessary (xx = 1, 
yy = 2, zz = 3, zy = 4, zx = 5, xy = 6).  

The internal isotropic strain ijtij uu δ= , where 

( ) ( )m
s
tm

c
tt RuRuu −ρθ+ρ−θ=  is different in core and 

shell. Namely, ( ) g
s
io

sss
t uTRssu +∆ϑ++µ−= 1211 22  at 

( )mi RR ,∈ρ  and Tu c
i

c
t ∆= ϑ  at ( )om RR ,∈ρ . Here the 

interface radius hRR om ∆−=  is introduced. The 
temperature change after annealing is aTTT −=∆ , and 

cs
i

,ϑ  are the linear temperature expansion coefficients. 
Polarization 3P  exists in the core region (“c”) only, i.e. 
( ) ( ) ( )ρ−θρ=ρ mRPP 33 . Hereinafter, superscripts “s” 

and “c” are related to the shell and core material, 
respectively. We will use them when necessary.  

Minimization of the free energy (A.1) on stress 
components leads to the following equations of state: 

( )
( )
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 (A.2) 

Here iju  are the strain tensor components. 
Displacement vector components iu  determine the strain 
tensor as ( ) 2ijjiij xuxuu ∂∂+∂∂= .  

Distribution of mechanical displacement should 
satisfy the conditions of mechanical equilibrium 

0=∂σ∂ iij x  as well as the appropriate boundary 

conditions 0=σijin  on the free surface and conditions 
of continuity at interfaces. 

Let us introduce the cylindrical coordinates 
(ρ, ψ, z) with z-axis coinciding with tube symmetry axis. 
Due to the axial symmetry of the system, only ρ- and z-
components of displacement are nonzero, uρ and uz. In 
the general case, both of them may depend on ρ and z, 
e.g. for the homogeneous thermal expansion 

TzuTu z ∆ϑ=∆ϑρ=ρ , . At the first approximation, 
we suppose that both displacement components depend 
only on one coordinate, namely uρ(ρ) and uz(z). Then, we 
try to find a general solution from the conditions of 
mechanical equilibrium that satisfies all the boundary 
conditions. 

For the given ansatz, the deformation tensor 
nontrivial components are zuu zzz ∂∂= , ρ∂∂= ρρρ uu  

and ρ= ρψψ uu . Shear components of stress and strain 

are zero. In this case, equations 0=∂σ∂ iij x  in the 
cylindrical coordinate system have the form: 
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 (A.3) 

Thus, equations of state (S.2) can be rewritten as 
follows: 
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Where 2
312PQuu t −−=υ ρρρρ , 

2
312PQuu t −−=υ ψψψψ , 2

311PQuu tzzzz −−=υ  and 
elastic stiffness ( ) ( )( )( )12111211121111 2ssssssc +−+= , 

( )( )( )121112111212 2sssssc +−−=  are introduced. 
After elementary transformations: 
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The boundary conditions of mechanical 
equilibrium 0=σijin  on the external surfaces of a 
cylindrical solid body have the following form: 
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On the interface between two different mediums 
(ρ = Rm), continuity conditions of stress tensor normal 
components and the displacement vector should be 
satisfied: 
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Therefore, for the tube consisting of two layers, we 
have seven boundaries and interfacial conditions (A.4-
8). At the same time, we have a general solution (A.3) 
for each layer, depending on the independent constants 
({ac, bc, cc} and {as, bs, cs}) in each layer. For two 
layers, we have six constants, which do not allow us to 
fulfill seven independent conditions simultaneously. 
Since we are interested in the solution for a long tube, 
we have to satisfy the conditions on the lateral surfaces. 
As for the conditions on faces at 2lz ±= , the natural 
way to solve this problem approximately is to nullify the 
overall force acting on the face of the tube, i.e. 

( ) 0ρρρ,2σ =±=∫
<ρ< io RR

zz dlz  and obtain the solution in 

the sense of the Saint Venant principle.  
Under the conditions ∆h << h and 

( ) ( )ρ−=ρ ,2,2 2
3

2
3 lPlP , we finally obtain the solution 

inside the core and shell regions: 
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0,0,0 =σ=σ=σ ψρρψ zz . (A.9e) 
Here the difference 
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c
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R
uuu −∆ϑ−ϑ++

µ
=−=∆ 1211 22  is 

introduced. Let us recap that superscript “s” is related to 
the shell material, “c” is related to the core. Hereinafter, 
we suppose that ij

c
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s
ij sss ≈≈ . Invariants: 
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Using (A.10) and the condition ∆h << h, the 
polarization dependent part of the core free energy 
expansion (A.1) acquires the form: 
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 (A.11) 
In Eq. (A.11) we neglected the terms proportional 

(∆h / h)2. 
 
 

Table 2. 
Parameters of single crystals PZT 50/50 

TC (K) 666 

αT (105 m F–1 K–1) 2.66 

β (108 m5 F–1 C–2) 1.898 

γ (108 m9 F–1 C–4) 8.016 

Q11 (m4 C–2) 0.097 

Q12 (m4 C–2) –0.046 

s11 (10–12 m2 N–1) 10.5 

s12 (10–12 m2 N–1) –3.7 

ε11; ε33 1700; 730 
 

PZT bulk values d31 = –93.5 pm/V, d15 = 494 pm/V, d33 = 
220 pm/V, ε11 = 1180, ε33 = 730. BTO bulk values d13 = –
34.5 pm/V, d33 = 86 pm/V, d15 = 392 pm/V, ε11 = 2920, 
ε33 = 168. 
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