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Abstract. We consider the polar properties of the ferroelectric nanotubes within the
framework of Landau-Ginzburg-Devonshire phenomenology. The approximate
analytical expression for the paraelectric-ferroelectric transition temperature dependence
on the radii of nanotube, polarization gradient, extrapolation length, elastic stresses and
strains arising from surface tension and thermal expansion mismatch, and electrostriction
coefficient was derived. We calculated effective local piezoresponse of the ferroelectric
nanotube within decoupling approximation of electric and elastic problem. Obtained
results explain the ferroelectricity conservation in Pb(Zr,Ti)O; and BaTiO; nanotubes
observed by using Piezoelectric Force Microscopy.
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1. Introduction

Ferroelectric nanotubes and nanorods are actively studied
in nano-physics and nano-technology [1-5]. In many cases
they demonstrate such polar properties as remnant
polarization [1] and local piezoelectric hysteresis [3-5].

It is generally accepted, that the ferroelectric
properties disappear under the particle size decreases
below the critical one [6]. Actually, it is well known that
depolarization electric field exists in the majority of
confined ferroelectric systems [7] and causes the size-
induced ferroelectricity disappearance in thin films and
spherical particles [8].

However, the cylindrical geometry does not destroy
ferroelectric phase (in contrast to size-induced
paraelectric phase in spherical particles [9-15]), but
sometimes the noticeable enhancement of ferroelectric
properties appears [1-5, 16]. For instance, Yadlovker and
Berger [1] reported about the spontaneous polarization
enhancement up to 0.25-2 pC/cm’® and ferroelectric
phase conservation in Rochelle salt nanorods. With the
help of Piezoelectric Force Microscopy (PFM),
Morrison et al. [4, 5] demonstrated that PbZr 5, Ti 4303
(PZT) nanotubes (radius R = 500-700 nm, thickness
h=50-70 nm, length 50 um) possesses rectangular
shape of the local piezoelectric response hysteresis loop
with effective remnant piezoelectric coefficient value
compatible with the ones typical for PZT films. Also, the

authors demonstrated that the ferroelectric properties of
the free BaTiO; nanotubes are perfect. Poyato ef al. [17]
with the help of PFM found that nanotube-patterned
(“honeycomb”) BaTiO; film of thickness 200-300 nm
reveal ferroelectric properties. The inner diameter of the
nanotubes ranged from 50 to 100 nm. Also, they
demonstrated the existence of local piezoelectric and
oriented ferroelectric responses, prior to the application
of a dc field, in nanotubes-patterned BaTiO; thin films
on Ti substrates synthesized hydrothermally at 200 °C.
The phenomenological description of ferroelectricity
enhancement in cylindrical nanoparticles has been
recently proposed [18-20].

In our consideration of ferroelectric nanotube, we
suppose that a nanoparticle surface is covered with a
charged layer consisted of the free carriers adsorbed
from the ambient (e.g., air with definite humidity or
pores filled with a precursor solution). For instance, a
thin water layer condensates on the polar oxide surface
in the air with humidity 20-50 % [*1]. The surface
charges screen the surrounding template (usually Si or
alumina porous matrix [1, 16] or regular 2D photonic
crystal [3-5]) from the nanoparticle electric field, but the
depolarization field inside the particle is caused by
inhomogeneous polarization distribution. Thus, one
could calculate the depolarization field inside a
cylindrical nanoparticle under the short-circuit
conditions proposed by Kretschmer and Binder [22].
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For the case when a liquid precursor of ferroelectric
(e.g. RS, PZT, SBT or BTO) filled the porous template
by capillary effects [1], the uniform stress inside the
pores is caused by surface tension [18]. During the
following annealing both the thermal stresses and misfit
strain on the tube-pore interface usually appear. In most
of cases the stress causes the thin strained layer (“shell”)
on the tube-pore interface. For instance, Luo ef al. [3]
and Morrison et al. [4, 5] reported about amorphous PZT
layer of thickness AAh = 5-20 nm that clamped the
nanotube crystalline “core”. The shell may be partially
removed by selective etching.

Using the experimental background, we modified
the core-and-shell model of spherical ferroelectric
nanoparticles proposed earlier by Niepce ef al. [23, 24]
and Glinchuk efal. [25] for the description of
ferroelectric nanotubes polar properties. Firstly, we
obtained the solution of elastic problem for the stress
distribution inside the tube covered with thin strained
shell. Then the polarization distribution inside the core
was obtained and approximate analytical expression for
paraelectric-ferroelectric transition temperature
dependence on the nanotube thickness and radius,
effective stress, polarization gradient and electrostriction
coupling coefficients was derived. Note that the stress is
caused by the particle surface clamping by template, i.e.
it is related to surface tension, thermal expansion and
mismatch strain [26]. We proved that the reason of the
polar properties enhancement and conservation in
ferroelectric nanotubes is the stress coupled with
polarization via electrostriction effect under the strong
decrease of depolarization field with tube length
increase. Within decoupling approximation of electric
and elastic problem [27, 28], we calculated the tube
PFM response and compared calculations with available
experimental data.

2. Free energy of ananotubein thecore
and shell model

Let us consider the ferroelectric cylindrical nanotube of
outer radius R,, inner radius R;, thickness 2= R, — R; and
height / (see Fig. 1). The tube “core” of thickness #— Ah
is covered with thin amorphous “shell” of thickness
Ah << h. The core polarization P; is oriented along z-
axes. The external electric field is E =(0,0,E,).

For the case when a liquid precursor of ferroelectric
filled the porous template by capillary effects, the
uniform stress G, =- pOSij is caused by surface tension

Po=2WR, [18], where the coefficient p could be related

to the effective surface tension. During the following
thermal annealing the cubic structured or even
amorphous shell layer of thickness A# << R, appears at
the nanotube-template interface. The nanotube
crystalline core is strained allowing for the thermal
expansion and growth deformations as well as the
surface tension frozen up inside the shell. Even after the
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Fig. 1. (a) Cross-section of the ferroelectric nanotube with
“shell” of thickness A4 and “core” of thickness #— Ah. (b)
Geometry of calculations in cylindrical coordinates

P, v, z}.

template removal, the internal strain w; =u,8; is
different inside core and shell. Namely, the shell strain
u; is determined by the effective surface tension p,,

growth deformation u, and thermal expansion during
annealing at temperature T, ie.

u; ==p,\s;; +2sy, |+ 8] AT +u,, whereas the core
strain is determined by the thermal expansion only, i.e.
u; =37 AT (here sy, and sy, are the elastic compliances,

97 and & are the linear temperature expansion

coefficients of the tube core and shell, AT = T— T, is the
temperature change, see e.g. [29, 30]). The difference

Au=u; —u; determines the core stress c;; as:
o’Ri )’
Au 2R, Ah ’ (1)
Sit S (Ro +Ri)h

¢ [
Gy, t 0, ® Oy ~G(R

G(Ro’Ri):_

Au :2—“(% + 20, )+ (9~ 9 AT —u,.

The Euler-Lagrange equation for the polarization
can be obtained by the variation on polarization of the
free energy functional G= Gy + G, consisting of the
bulk part Gy and the surface one Gs. The bulk part Gy
acquires the form:

1/2 2n R,—Ah o (T)
G, = J dzjdw Ipdpx(R—};2+
1120 R 2

2
B Y o 2 Ed
H R o P42 (VRY - B B+ == ).
Material coefficients 6 >0 and y >0, coefficient

B <0 for the first order phase transitions or p > 0 for the
second order ones. The depolarization field is denoted

by E3d . The coefficients a.(7) and Py is renormalized by

elastic stresses oj; as
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oy (TR, R)=a,(T-T.)+2(0, + 0, )x

Au 2R Ah 3)
x b
S+ 8, (Ro +Ri)h
BR(RU’Ri) =
—B+2 (Q121 + Q122 )yll —20,,0,5, 2R,Ah ‘ )
5121_S122 (R0+Ri)h

Here, parameters 7c and Q; are respectively the
Curie temperature and electrostriction coefficient of the
bulk material; oy is proportional to the inverse Curie
constant.

Note that under the condition R,;— o the
renormalization given by Egs. (3)-(4) coincides with the
ones obtained for thin strained films by Pertsev ef al.

[30] allowing for stress relaxation [31], namely
c(h)z Au A_h, here Ah could be related with
Sy s h

characteristic distance h; of stress relaxation and
Au — u,,. In other words, we obtained that the stress
relaxation occurs inside the shell. When Ah — 0 the
nanotube crystalline core appeared almost unstrained,
ie.c=0.

The surface part of the polarization-dependent free
energy Gy is thought to be proportional to square of
polarization on the particle surface S, namely

Gy :g % P32 (M is the extrapolation length [8, 9]).

S
The considered nanotube has upper and bottom surfaces
z=1/2, z=-1/2 and sidewalls p=R,;, p= R,— Ah, so
its surface energy Gy acquires the form:

2n 1/2 R R
Gy =8| dw{ [ d{k—“e%p:Ro—Ah)u—'f?(p:R[)}

R,—Ah
Yottt
- 2 2

We  introduced longitudinal and lateral
extrapolation lengths A,# Ag. Hereinafter, we regard
these extrapolation lengths positive.

Variation of the free energy expression 6G / dP;=0
yields the Euler-Lagrange equations with the boundary
conditions on the tube faces z==+//2 and the sidewalls
p = R, ;. Under the presence of lattice pinning of viscous
friction type, the polarization distribution should be
found from Landau-Khalatnikov equation 8G /6P;= —
I' 0 P;/0 t, where T in kinetic coefficient. Along with the
Poisson equation for the depolarization field
E{ =-0¢/oz they form the closed system:

)

0
ra_P3 +ozb +BRP33 +YP35 -
t
1 2

2
—8[6—2+lipi+—2—2j@ =E,+E,
0z" pop Op p Oy

(gubﬁJ =0,
dz ).y 6)
(Q—kbﬁj =0,
dZ z=—1/2
P3+7»Sﬁ =0,
dp ok,
I%_}”Sﬁ :07
dp o
2 2
TS
oz" pdp Op p oy %)

o(p=R,,)=0, q{z = ié} =0.

The polarization distribution in the ferroelectric
phase should be found by direct variational methods
allowing for possible polydomain states appearance in
confined particles. At (As/ R,) <<1 an exact series for
the polarization and depolarization field distributions can
be obtained [18]. The inequality (As/ R,) <<1 is valid
for typical extrapolation lengths Ag=0.3-5 nm and radii
R,=30-500 nm. Substituting ~ the  series  for
depolarization field and polarization into the free energy
G and integrating over nanoparticle volume, we obtained
the free energy with renormalized coefficients for the
average polarization. For infinite tubes and wires, the
single-domain state is energetically preferable, since the
depolarization field is absent and correlation energy is
minimal for single-domain case. The depolarization field
is highest for a single-domain nanotube, namely its
upper estimation has the form:

41
El(p,z) = —
10:2) 1+(k011/27tR0)2X .
S 3
{012 [
-if2

Hereinafter, kyi(R,,R;) is the lowest root of the

equation Jo(km %JNO (ko )_ Jo (k01 )No(km %) =0

(Jo(x) and Ny(x) are Bessel and Neiman functions of zero
order, respectively). It should be noted that the
depolarization field is absent outside the particles in the
framework of our model. Therefore, the interaction of
such nanoparticles is practically absent due to the
screening. Their composite can be considered as the
assembly of independent particles.
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For finite polydomain tubes, only numerical
simulations have been performed. However, simple
approximate analytical expression for the free energy
renormalized coefficients has been obtained for the
infinite single-domain tubes. We report the results
below.

3. Phase diagram of the long nanotubes

We derived the interpolation for the paraelectric-
ferroelectric transition temperature Tcp(R,, R;) of the
long nanotubes (for />> R, depolarization field E; — 0
in accordance with Eq. (8)):

TCR(RU’Ri):TC +MG(RMR1')_
&r ©)
_Skgl(Ro’Ri )
o, R;

An expression for the stress o(R,, R;) is given by
Eqgs (1). The first term in Eq. (9) is the bulk transition
temperature, the second term is related to the coupling of
stress with polarization via electrostriction effect, the
third term is caused by correlation effects. The
correlation term is always negative and thus only
decreases the transition temperature, whereas the
electrostriction term in Eq. (9) could be positive or
negative depending on the sign of (Q;; + Q1»)c. Note that
both signs of (Q;1+ Q) are possible for different
ferroelectrics, however (Q;+ Q;,) >0 for most of the
perovskite ferroelectrics. Below, we demonstrate that
increasing of transition temperature and thus
ferroelectric ~ properties  conservation or  even
enhancement is possible, when the stress is compressive
(0 <0) and depolarization field is small enough.

Taking into account that the correlation radius at
zero temperature is several (up to ten) lattice constants

w/5/0°rTc ~1-4nm (see, e.g., experimental data of
Rodriguez ef al. [32]) and using expression (1) for the
stress, we introduced the parameters and dimensionless
variables that correspond to the lattice constant units:

o 201+0,) (9 -9 AT —u,

m

o, Te Sit S
R, = 4(Q11 +Q12) By +2s), , (10a)
o, Te Ry s+
R R
RS = 8 5 rn =— 5 rl =_ls
o1 Ry Ry
Ah
wett,  pw=22 (10b)
Ry R
Using approximate formula

ko () = /(1= x)— (1= x)/(4(1= x)* +87x) for x — 1,

where x = r;/ r, one can write in dimensionless variables:

(11)

Let us make some estimations of the second and
third terms in Eq.(11) for perovskites BaTiO; and
Pb(Zr,Ti)O;. Using parameters Q;; = 0.11 m*/C?, 0),=—
0.043 m*/C* Tc= 400K, oy= —7.410° K" (BaTiO;)
and 0y, = 0.089 m*/C’, Q)= -0.046 m*/C?, Tc= 666 K,
ar=—3-10" K" (PbZrysTips05); s, = 8107 Pa, s1,= —
2510 Pa, Au~ 5(10°-107) for por-Si or AlO;
templates, p=0.5-5N/m (see, e.g., Ref. [13]), we

obtained that R, ~ 0.06-0.6, R, |~ 0.5-5 and Aw ~ 0.2-

2, respectively. Hence, both terms are comparable with
unity and their contributions should be calculated
carefully for the material under consideration.

The dependences of transition temperature
Ter(w, ri, 7,) on tube thickness w for the cases of
compressed (R, <0, solid curves), unstrained (Aw =0,
dashed curves) and tensiled (R,, > 0, dotted curves) tubes
are compared in Fig. 2a. Corresponding spontaneous

P3(T)= _U“R(T)/BR
dependences are presented in Fig. 2b. It is clear that
nanotube compression leads to the maximum 7. > Tc
on transition temperature thickness dependence and to
the corresponding enhancement of spontaneous
polarization P5(7)> Pg(T) in the temperature range
T~ Ty, Wwhereas unstrained and tensiled nanotubes
reveal monotonic dependences Tcr(w, 7y, 1,) < Tc with
deteriorated polar properties P5(7) <Pg(7T). Let us
underline that the height and sharpness temperature
maximum observed for compressed tubes decreases
under the decrease of shell layer thicknesses Aw.

For the important case of thin tubes (w <<r;) one
obtains from Eq. (11):

2
TCR(W)zTC(l_Rmﬂ_TE_zJ'

polarization temperature

(12)
wow

Under the condition R,, <0, the second term tends
to increase Tcg, while the third one always decreases it.
At R, <0, the competition between the contribution of
strain effect represented by the second term and the
correlation effect represented by the third one leads to
the maximum appearance in Tcg(w) dependence,
namely:

. (13)

max
R, Aw

For thin tubes, we also obtained simple analytical
expressions for the critical radius at given temperature T:

R AW AT (1= T/T, )+ R2AW?
- 2(1-1/T,) '

2 2 2
Tma)((‘/vma)()z TC(1+ R’”sz j’w ~ ZTC
47

(14)
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Fig. 2. (a) Transition temperature via tube thickness w and (b)
spontaneous polarization temperature dependence for tube
thickness w=7 calculated from Eq.(11) for Rg=4nm,
Aw =05, R,=0.5 (which corresponds to PZT 50/50
parameters), r;=0; 1; 200 (curves 1, 2,3), R,=-4 (solid
curves), R, =0 (dashed curves), R, =+4 (dotted curves).
Dashed-dotted curves correspond to the bulk material with
spontaneous polarization Pg (7).

Sign “+” before the radical in Eq. (14) corresponds
to the both cases of unstrained, tensiled or compressed
tubes (i.e., both signs of R,,), while both signs “+” have
sense for compressed tubes (i.e. two roots may exist at
R,, < 0) under the condition 7> T¢.

Finally let us discuss the influence of quartic term
renormalization B given by Eq. (4) on nanotubes phase
diagrams in the particular case of the first order phase
transitions in bulk material, i.e. when B<0. Since

Br =B+ ABM in accordance with Eq. (4), the
(r, +7)w

situation Bz >0 could appear at some tube thicknesses
when AP > 0, i.e., the transition order in nanotube would
be changed. This situation for PbTiO; nanotubes phase
diagrams in coordinates tube thickness-inner radius is
demonstrated in Fig. 3 at room temperature and different
stress signs (R, <0, R,,=0, R,, > 0).

For the chosen material parameters, compressed
tubes phase diagrams (a) have the thinnest region of
paraelectric phase (PE) and widest region of the second
order ferroelectric phase (FE-II) in comparison with
unstrained (b) and tensiled (¢) tubes.

4. Piezoelectric for ce microscopy response of
ferroelectric nanotubes

Recently Morrison et al. [4,5] demonstrated that long
Pb(Zr,Ti)O; and BaTiO; nanotubes possess perfect
piezoelectric properties. For thin PbZrs;TiygO; nanotube
(outer diameter 700 nm, wall thickness about 70 nm,
length 30 um) they obtained rectangular hysteresis loop
of effective piezoelectric response 4" (U ) Poyato et al.

[17] with the help of PFM found that nanotube-patterned

(a) Compressed (b) Unstrained (c) Tensiled

10 10 10
< PE
< PE FE-I
1%} 8 8 8
= PE
2 6 FE-I 6 FE-I 6
=~
5 4 4
g FE- Il FE- I
— 2 2 N\ 2

J\
0 0

0 2 4 6 8 10 0 2

4 6 s 10 Y0 2 4 6 3 10
Tube thickness w = h/Rj

Tube thickness w = h/Rjy

Tube thickness w = h/Rg

Fig. 3. Phase diagram in coordinates {r;, w} calculated at room temperature 7 = 297 K, Rg=4 nm, Aw = 0.5, R, = 0.2, R,, = —4 (a),
R,,=0(b), R, = +4 (c). Material parameters correspond to PbTiOs; PE — paraelectric phase, FE — ferroelectric phases of the first (I)
and second (II) orders.
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BaTiO; films of thickness 200-300 nm reveal

piezoelectric hysteresis.
The effective vertical piezoresponse d$i s
determined by the vertical mechanical displacement 1,

of  ferroelectric  sample surface caused by
inhomogeneous electric field of a PFM probe biased

under the voltage U, namely 45 (U)=us/U (see e.g.

Refs. [33-35]). The local PFM response d3e3ff is

proportional to the stress piezoelectric tensor coefficients
dyy (r) representing ferroelectric material properties

convoluted with the appropriate elastic Green function
G (r,€) [33-35]. Extending the results of Refs. [35, 37]

for an empty tube embedded into non-piezoelectric
matrix, we obtained that

T T T 0G-8y-8.8)
a5t )= [z [de, [ aes—" x
—o0 —o0 0 aé;k
X E;(€)" Cimnpum (01 +E1,v2 +E5.83)
~113(Ry, R;,a,9,v)d3 (U) + 151 (R, , R @, 9)x
xdys(U) +133(R,, Ry, a,9)d33 (U).
(15)
The inhomogeneous electric field
E,(r)=—-8¢/ox, is produced by the PFM tip inside of
the sample, ¢ yjmn 3T€ stiffness tensor components. Rather

cumbersome integrals t13(R0,R,-,a,y,v) depend only on
tube outer and inner radiuses, diclectric anisotropy
coefficient 9 = fe,, /¢, , Poisson ratio v and probe
electric field distribution and tip position a with respect
to the tube (see Fig.4a). In the approximation of

effective point charge Q simulating the probe electric
field, the distance between the sample surface and the

effective point charge is dy=¢, ”o/ /8“533 (ro is the

probe apex curvature, €, is ambient permittivity,
dp ~ 10 nm). In accordance with Eq. (15), the effective

piezoresponse a’;ff polarization dependence is fully

determined by piezoelectric coefficients averaged over

d :230ij1m<sﬂPm> in Voigth notation acquire

explicit form:
dy; = 280Q11<533P3 >, dy = 280Q12<533P3 >’

d =280Q44<811P3 > (16)

Oy is electrostriction tensor components in the Voigth

notation.
In Table 1, we summarized calculated values of

thermodynamic coercive field E, = 24— o RS/ 27B >

spontaneous polarization Pg, dielectric permittivity €35 at
room temperature, critical thickness /4, and Curie
temperature 7c for compressed (Au <0), unstrained
(Au =0) and tensiled (Au > 0) PZT (50/50) nanotubes
(first 3 rows) in comparison with bulk material (last
row). In the last columns of the table, we presented the

values of electric field
(V £ /85, Z+dQ) €11 /854, produced by

E,(p,z)=U (p2+(,/g“/—g33z+dg)zj3/2

the PFM tip with parameter dy = 25-50 nm on the tube
surface z =0 and in the depth z = dy for the coercive

voltage U ~ 2.5V measured experimentally. Material

parameters used in calculations are given in Table 2 of
Appendix A.

It is clear that obtained values of Ey(0,0) is in order
of magnitude higher than thermodynamic coercive field

E_ . The result is expectable, since in order to reverse

the polarization inside the domain the PFM tip field
should be higher than the coercive one not only just
below the tip (z=0, p=0) but also inside the layer of
depth about d, (typical penetration depth of
piezoresponse) [36,37]. The values Ey(0,z=dp)
actually appeared ten times smaller than £,(0,0) and in a

good agreement with calculated £, values.

We compare the piezoresponse loop shape obtained
for PbZrs,TissO5 nanotube [4] and BaTiO; honeycomb

b e vl The - cmenton 15" \15 il saaions 0 s
Table 1.
Tubes PZT Strain Au | E. (kV/em) | Pg(uCl/em?) €33 hey Tc (K) Ey(0,0) Ey(0, dp)
(50/50) (%) (nm) (kV/cm) (kV/cm)
Sizes: -1 209 45 398 12.3 704 2060-1030 219-110
R,=700 nm, 0 167 42 474 16.8 645 1900-950 227-113
h=70nm, 1 128 39 583 23.0 586 1700-850 232-116
Ah=7nm
Bulk PZT (50/50) 228 50 375 — 666 2100-1050 214-107
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PFM tip apex curvature

r9=25-50nm
(a) (b)
nanotube-patterned Pb(Zr,Ti)Os
BaTiO3 nanotube
75 100 -
. | a
’; <50
B 25 . frtmen: %
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. oy _n acapl] -50 J
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Applied voltage U (V)

Fig. 4. (a) Effective piezoresponse d§§f of PbZrs,Ti430; nanotube (outer diameter 700 nm, wall thickness 90 nm, length
about 30 um) vs. applied voltage U. Squares are experimental data of Morrison ef al. [4], solid curve is our fitting (13) for

Rs=7, Ar=5, R,=-5, $=0.25 and PZT material parameters. (b) Effective piezoresponse d3e§f of nanotube-patterned

BaTiO; “honeycomb” (inner radius 50-100 nm, film thickness about 200-300 nm) vs. applied voltage U. Squares are
experimental data of Poyato et al. [17], solid curve is our fitting at R;= 50 nm, R,= 62 nm, Rg= 6, Ar = 5, R,= -5 and BaTiO;

material parameters. Dimensionless frequency of external field oI'/(a77c) = 0.15, JE =1nm.

5. Conclusions

e We reported ferroelectricity conservation and
enhancement in long perovskite nanotubes compressed
by their shell in contrast to ferroelectricity degradation in
perovskite nanotubes tensiled by their shell. We
demonstrated the stress-induced change of the
ferroelectric phase transition order.

o The anisotropic stress as well as depolarization
field decrease in long nanotubes are the keys to the
ferroelectricity conservation. While the influence of
depolarization field is obvious, the role of radial stress can
be qualitatively understood as follows: although the radial
stress conserves the inversion center, it leads to the short-
range forces strengthening in lateral direction (caused by
the bond contraction) and their weakening in z-direction
(caused by the bond elongation). As a result, the long-
range correlations become more pronounced in polar
direction in comparison with the short-range forces.

e We calculated the tube PFM response and
demonstrated reasonable agreement with available
experimental data.
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Appendix A. Free energy with coefficients
renor malized by elastic stresses

Let us consider the nanotube with sidewalls covered
with thin surface layers (shell). The free energy
expansion on polarization P =(0,0,P,) and stress o

powers has the form:

2 4 6 2 2
a\Ps +an Py +a Py —0,,053P; —Q12(511+022)P3 -

1/2 2n R,

1
Gy = I dZIdWIPdP —((511+022 +033)”z—5S11(0121+G§2 +G§3)—

-1/2 0 R

(A.1)

1 2 2 2
—512(011522 +011033 +G33022)—ES44 023 +013 +012
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Subscripts 1, 2 and 3 denote Cartesian coordinates
x, y and z, respectively. Hereinafter, we use Voigt
notation or matrix notation when it is necessary (xx =1,
yw=2,zz=3,zy=4,zx =5, xy = 0).

The internal isotropic strain wu; =u,d;;, where

i i

u, =u‘0(R, —p)+u'6(p—R,) is different in core and
shell. Namely, u; = —2u(sf1 +2s), )/ R, +9/AT +u, at
pe(R;,R,) and uf =9AT at pe(R,,R)). Here the
R,=R —Ah is introduced. The

temperature change after annealing is AT =7 -T,, and

interface radius

9. are the linear temperature expansion coefficients.

Polarization P; exists in the core region (“c”) only, i.e.
P3(p)= P3(P)9(Rm - p). Hereinafter, superscripts “s”

and “c” are related to the shell and core material,

respectively. We will use them when necessary.
Minimization of the free energy (A.1) on stress

components leads to the following equations of state:

_ 2

Uy =501 +312(522 +533)+Q12P3 +u,
2

Uy =510 +Slz(011 +G33)+Q12P3 Tu, (A.2)
2

Uyz = 811033 +512(622 +611)+Q11Pa +u,,

2Uyy =540y, 2U;3 =540);, 2Uj, =540,

Here u, are the strain tensor components.

Displacement vector components 3, determine the strain
tensor as u,, = (6ui/6xj + 8uj/6x,.)/2.

Distribution of mechanical displacement should
satisfy the conditions of mechanical equilibrium
0o, /6xi =0 as well as the appropriate boundary

conditions n,6; =0 on the free surface and conditions

of continuity at interfaces.

Let us introduce the cylindrical coordinates
(p, v, z) with z-axis coinciding with tube symmetry axis.
Due to the axial symmetry of the system, only p- and z-
components of displacement are nonzero, u, and u.. In
the general case, both of them may depend on p and z,
e.g. for the homogeneous thermal expansion
u, =p3AT, u, =z3AT. At the first approximation,

we suppose that both displacement components depend
only on one coordinate, namely u,(p) and u.(z). Then, we
try to find a general solution from the conditions of
mechanical equilibrium that satisfies all the boundary
conditions.

For the given ansatz, the deformation tensor
nontrivial components are u_ =0du,_ [0z, u, =0u, / op

and u,, =u, / p . Shear components of stress and strain

are zero. In this case, equations 661,]. /axi =0 in the

cylindrical coordinate system have the form:

do.. _ 0.

0z (A3)
agw n Opp ~Ouy -0

op p

Thus, equations of state (S.2) can be rewritten as
follows:

Gpp = C“Upp +012(D‘V‘V +V,, ),
GW\V = CIIU\VW +C12(Upp +UZZ ),

G, =CV, t 612<U

(A.4)
wy T Vpp )

_ 2
Where Upp —upp —U; —Q12P3 .

2 2
yy = Uyy T U _QIZ})3 5 Vg =Uz —U; _Q11P3 and

elastic stiffness ¢, = (s,, +5,, )/((s,, =5, 5, +25,,))-

v

C, =—S), / ((s” -8, )(s” +2s,, )) are  introduced.
After elementary transformations:
c
u,=az, u, =bp+—,
P (A.5a)
u_=a, u_=»b u b+ ¢
z =% Uy =0T Uy = 2
p p

G,y =aCy, +b(cll +012)_%(011 _Clz)_
—Uu, (011 +2¢y, )_ (le (Cn + Clz)+ 0, )Psza
Oyy =dCp +b(c“ +012)+§(011 _612)_ (A.5b)

_ut(cll +2012)_(Q12(011 +Clz)+Q11012)P32’
G.=ac, +2bc, _ut(cll +2012)_

- (Qn o, +20,,¢, )P32

The boundary conditions of mechanical
equilibrium n,6; =0 on the external surfaces of a

cylindrical solid body have the following form:
Gép(p =Ro)= 0, G;p(p = Ri)= 0,
0% (z=%//2.p < (R;.R, ) =0,
o%(z=%1/2.p(R,.R,))=0.

(A.6)

On the interface between two different mediums
(p=R,), continuity conditions of stress tensor normal
components and the displacement vector should be
satisfied:

Ggp(szm +O)=cgp(p=Rm —0),
up(p:Rm +0):up(p:Rm _O)’
uz(szm +0)=u2(p=Rm _O)

(A7)
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Therefore, for the tube consisting of two layers, we
have seven boundaries and interfacial conditions (A.4-
8). At the same time, we have a general solution (A.3)
for each layer, depending on the independent constants
({a", b5 ¢} and {da’, b’,c’}) in each layer. For two
layers, we have six constants, which do not allow us to
fulfill seven independent conditions simultaneously.
Since we are interested in the solution for a long tube,
we have to satisfy the conditions on the lateral surfaces.
As for the conditions on faces at z =+//2, the natural

way to solve this problem approximately is to nullify the

overall force acting on the face of the tube, i.c.
Iozz (z=+1/2,p)pdp=0 and obtain the solution in

R, <p<R;

the sense of the Saint Venant principle.

Under the conditions Ah<<h and
P(l/2,p)= P} (~1/2,p), we finally obtain the solution
inside the core and shell regions:

C C C C 1
6,,+0,=0,,+0,, =—— —X
pp vy s+ s, A
2R, Ah {A lesu 051, Pz}
(R +R. )h 51— 81,
c c 1
033 = cjzz == B s x
S11 +S12 (A9b)
2R, Ah Au Qllsll 0,51, P
(R +R. )h 81 =S,
o' = |: + 0,50 — 01,51, %
- Slsl + Slxz SISI - S:2 (A9C)
2 d
R, <p<R; R Rl
SS _ SX
Gy + Oy == [Aw Catn G
S8, St~ S
(A.9d)
2pd
[ e s B/2.p)|.
R, <p<R; i
Gpy =0, o©,.=0, o, =0. (A.9¢)
Here the difference

Au=u —u; =

i—“(sfl w25 )+ (8 —9 AT —u, s

4
“ 2

introduced. Let us recap that superscript “s” is related to

the shell material, “c” is related to the core. Hereinafter,

we suppose that §;; ~ s,
. 1

Sp (Gii): - x

S8y,

(2Au + (le + Qn)P32)’

RSy Invariants:

(A.10a)
2R Ah

(R +R)h

splo1) {2040, +0,)~
Spp 8, (A.10b)
2pdp 2
R, <J,;<R R _Rz
G;z z;[Auz +2AM(Q11 +Q12)X
(Sll +S12)2
2pd
I Rzp_;z Pif2.p)+
R, <p<R;, ""m i
‘ (A.10c)

2 2.2 2
n (Qll +Q1|X511 +S12)_4Q11Q125|15|2 %

(s = 512)
QTP

Using (A.10) and the condition Ah<<h, the
polarization dependent part of the core free energy
expansion (A.1) acquires the form:

112 21 R,—Ah
G, = I dzjdw jpdpx
/20 R,
A 2R Ah
[al'f'(Qll'f'le/S ”S (R +R)th32+61111P36+
» 12
tla + 2R, Ah (Qn +Q12)y” -20,0,5,, P4
11 2
(Ra +Ri)h 2(Sn S12)

(A.11)
In Eq. (A.11) we neglected the terms proportional
(AR 1 h).

Table 2.

Parameters of single crystals PZT 50/50
Tc (K) 666
ar(1°°mF'K™) 2.66
BA*m F'C? 1.898
y (108 m°’ F' ¢ 8.016
Oy, (m*C?) 0.097
0, (m* C?) —0.046
si (1072 m* N 10.5
512 (1072 m* N 3.7
€11; €33 1700; 730

PZT bulk values ds3; =-93.5 pm/V, di5= 494 pm/V, d3;=
220 pm/V, g, = 1180, &33 = 730. BTO bulk values dj3=—
34.5 pm/V, ds3= 86 pm/V, d;s= 392 pm/V, g;;= 2920,
€33~ 168.
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