Semiconductor Physics, Quantum Electronics and Optoelectronics, 12 (4) P. 315-320 (2009).
DOI: https://doi.org/10.15407/spqeo12.04.315


References

1. C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles. Wiley Interscience, New York, 1998.
https://doi.org/10.1002/9783527618156
2. K. Tanabe, Optical radiation efficiencies of metal nanoparticles for optoelectronic applications // Materials Letters 61 (23-24), p. 4573-4575 (2007).
https://doi.org/10.1016/j.matlet.2007.02.053
3. K.R. Catchpole, A. Polman, Plasmonic solar cells // Opt. Express 16 (26), p. 21793-21800 (2008).
https://doi.org/10.1364/OE.16.021793
4. H.R. Stuart, D.G. Hall, Island size effects in nanoparticle-enhanced photodetectors // Appl. Phys. Lett. 73 (26), p. 3815-3817 (1998).
https://doi.org/10.1063/1.122903
5. S. Pillai, K.R. Catchpole, T. Trupke, M.A. Green, Surface plasmon enhanced silicon solar cells // J. Appl. Phys. 101, 093105-093113 (2007).
https://doi.org/10.1063/1.2734885
6. J. He, P. Yang, H. Sato, Y. Umemura, A. Yamagishi, Effects of Ag-photodeposition on photocurrent of an ITO electrode modified by a hybrid film of TiO2 nanosheets // J. Electroanalyt. Chem. 566 (1), p. 227-233 (2004).
https://doi.org/10.1016/j.jelechem.2003.11.031
7. D.M. Schaadt, B. Feng, E.T. Yu, Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles // Appl. Phys. Lett. 86 (6), p. 1-3 (2005).
https://doi.org/10.1063/1.1855423
8. S.H. Lim, W. Mar, P. Matheu, D. Derkacs, E.T. Yu, Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles // J. Appl. Phys. 101 (10), 104309 (2007).
https://doi.org/10.1063/1.2733649
9. N. Chandrasekharan, P.Y. Kainat, Improving the photoelectrochemical performance of nanostructured TiO2 films by adsorption of gold nanoparticles // J. Phys. Chem. B 104 (46), p. 10851-10857 (2000).
https://doi.org/10.1021/jp0010029
10. T. Lana-Villarreal, R. Gomez, Interfacial electron transfer at TiO2 nanostructured electrodes modified with capped gold nanoparticles: The photoelectrochemistry of water oxidation // Electrochem. Communs 7 (12), p. 1218-1224 (2005).
https://doi.org/10.1016/j.elecom.2005.08.031
11. Y.S. Park, L.M. Liz-Marzan, A. Kasuya, Y. Kobayashi, D. Nagao, M. Konno, S. Mamykin, A. Dmytruk, M. Takeda, N. Ohuchi, X-ray absorption of gold nanoparticles with thin silica shell // J. Nanoscience and Nanotechnology 6, p. 3503-3506 (2006).
https://doi.org/10.1166/jnn.2006.044
12. D.A.G. Bruggeman, Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizits konstanten und Leitfhigkeiten der Mischkrper aus isotropen Substanzen // Annalen der Physik 416 (7), S. 636- 664 (1935).
https://doi.org/10.1002/andp.19354160705
13. A.V. Korovin, Improved method for computing of light-matter interaction in a multilayer corrugated structures // JOSA A 25, p. 394-399 (2008).
https://doi.org/10.1364/JOSAA.25.000394
14. N. Dmitruk, T. Barlas, A. Dmytruk, A. Korovin, V. Romanyuk, Synthesis of 1D regular arrays of gold nanoparticles and modeling of their optical properties // J. Nanoscience and Nanotechnology 8, p. 564-571 (2008).
https://doi.org/10.1166/jnn.2008.A137
15. N.L. Dmitruk, A.V. Korovin, High light transmission through thin absorptive corrugated films // Opt. Lett. 33, p. 893-895 (2008).
https://doi.org/10.1364/OL.33.000893