Semiconductor Physics, Quantum Electronics and Optoelectronics, 12 (4) P. 328-338 (2009).
DOI: https://doi.org/10.15407/spqeo12.04.328


References

1. V.E. Gantmakher and Y.B. Levinson, Carrier Scattering in Metals and Semiconductors. NorthHolland, Amsterdam, 1987.
2. D.K. Ferry, High-field transport in wide-band-gap semiconductors // Phys. Rev B 12, p. 2361-2369 (1975)
https://doi.org/10.1103/PhysRevB.12.2361
K.W. Kim, V.N. Sokolov, V.A. Kochelap, V.V. Korotyeyev, and D.L. Woolard, High-speed and high-frequency electron effects in nitride semiconductors for terahertz applications // Phys. status solidi (c) 2(7), p. 2569-2572 (2005) (with regard to group III-nitride).
https://doi.org/10.1002/pssc.200461372
3. W. Fawcett, A.D. Boardman and S. Swain, MonteCarlo determination of electron transport properties in gallium arsenide // J. Chem. Solids 31, p. 1963 (1970).
https://doi.org/10.1016/0022-3697(70)90001-6
4. C. Jacoboni and L. Reggiani, The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials // Rev. Mod. Phys. 55(3), p. 645-705 (1983).
https://doi.org/10.1103/RevModPhys.55.645
5. H.D. Rees, Calculation of distribution functions by exploiting the stability of the steady state // J. Phys. Chem. Solids 30, p. 643-655 (1969).
https://doi.org/10.1016/0022-3697(69)90018-3
6. H. Kosina, M. Nedjalkov, and S. Selberherr, The stationary Monte Carlo method for device simulation. I. Theory // J. Appl. Phys. 93(6), p. 3553-3563 (2003).
https://doi.org/10.1063/1.1544654
7. B. Gelmont, K. Kim and M. Shur, Monte Carlo simulation of electron transport in gallium nitride // J. Appl. Phys. 74, p. 1818-1821 (1993).
https://doi.org/10.1063/1.354787
8. U.V. Bhapkar and M.S. Shur, Monte Carlo calculation of velocity-field characteristics of wurtzite GaN // J. Appl. Phys. 82, p. 1649-1655 (1997).
https://doi.org/10.1063/1.365963
9. Sh. Chen and G. Wanga, High-field properties of carrier transport in bulk wurtzite GaN: A Monte Carlo perspective // J. Appl. Phys. 103, 023703 (2008).
https://doi.org/10.1063/1.2828003
10. G.I. Syngayivska and V.V. Korotyeyev, Monte Carlo Simulation of hot electron effects in compensated GaN semiconductors at moderate electric fields // Semiconductor Physics, Quantum Electronics & Optoelectronics 10(4), p. 54-59 (2007).
https://doi.org/10.15407/spqeo10.04.054
11. M. Levinstein, S. Rumyantsev, and M. Shur, Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, SiGe .Wiley, New York, 2001.
12. J.M. Barker, D.K. Ferry, D.D. Koleske and R.J. Shul, Bulk GaN and AlGaN/GaN heterostructure drift velocity measurements and comparison to theoretical models // J. Appl. Phys. 97, 063705 (2005).
https://doi.org/10.1063/1.1854724
13. B.A. Danilchenko, S.E. Zelensky, E. Drok, S.A. Vitusevich, S.V. Danylyuk, N. Klein, H. Luth, A.E. Belyaev and V.A. Kochelap, Hot-electron transport in AlGaN/GaN two-dimensional conducting channels // Appl. Phys. Lett. 85, p. 5421 (2004).
https://doi.org/10.1063/1.1830078
14. L. Ardaravichius, A. Matulionis, J. Liberis, O. Kiprijanovic, M. Ramonas, L.F. Eastman, J.R. Shealy, and A. Vertiatchikh, Electron drift velocity in AlGaN/GaN channel at high electric fields // Appl. Phys. Lett. 83(19), p. 4038 (2003).
https://doi.org/10.1063/1.1626258
15. V.L. Bonch-Bruyevich and S.G. Kalashnikov, Semiconductor Physics. Nauka, Moscow, 1977 (in Russian).
16. D.K. Ferry, Semiconductors (Ch. 10). Macmillan, New York, 1991.
17. I.M. Dykman, P.M. Tomchuk, Transport Phenomena and Fluctuations in Semiconductors. Naukova Dumka, Kyiv, 1981 (in Russian).
18. R.I. Rabinovich, On galvanomagnetic phenomena under hot-electron energy scattering on optical phonons // Fizika Tekhnika Poluprovodn. 3(7), p. 996-1004 (1969) (in Russian).
19. Z.S. Gribnikov, V.A. Kochelap, Cooling of current carries under scattering of energy on optical phonons // Zhurnal Eksp. Teor. Fiziki 58(3), p. 1046-1056 (1970) (in Russian).
20. L. Varani, J.C. Vaissiere, E. Starikov, P. Shiktorov, V. Gruzinskis, L. Reggiani and J.H. Zhao, Monte Carlo calculations of THz generation in nitrides // Phys. status solidi (a) 190(1), p. 247-256 (2002)
https://doi.org/10.1002/1521-396X(200203)190:1<247::AID-PSSA247>3.0.CO;2-M
Monte Carlo simulation of the generation of terahertz radiation in GaN // J. Appl. Phys. 89(2), p. 1161-1171 (2001).
https://doi.org/10.1063/1.1334924
21. J.T. Lu and J.C. Cao, Monte Carlo study of terahertz generation from streaming distribution of two-dimensional electrons in a GaN quantum well // Semicond. Sci. Technol. 20, p. 829-833 (2005)
https://doi.org/10.1088/0268-1242/20/8/034
Hot-electron dynamics and terahertz generation in GaN quantum wells in the streaming transport regime // Phys. Rev. B 73, 195326 (2006).
https://doi.org/10.1103/PhysRevB.73.195326