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1. Introduction

It was shown in the previous paper (see Ref. [1]) that e-e-
interaction in multi-valley semiconductor with equivalent 
anisotropic valleys (germanium and silicon, for example) 
introduces specific contribution to conductivity. The 
intervalley drag cannot principally be considered in 
framework grounded on popular -approximation (see 
Refs [25]). Results obtained in the paper [1] give a 
sufficient basis to expect appearance of conformable new 
results to other kinetic phenomena. Specific interest 
consists in comparison of some values (Hall-constant and 
magnetoresistivity), calculated by the proposed method of 
balance equation, with analogous values obtained using 
the of ordinary method of scalar relaxation time. 

2. Quantum kinetic equation

Consider here an uniform crystal in constant uniform 

electrical and magnetic fields E


 and H


. For this case 
the stationary quantum kinetic equation for 

nonequilibrium distribution function )(a
k

f   of carriers 

from a-valley can be presented in the following form 
(see Refs [1, 6  8]): 
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(а , b = 1, 2, … , N ). (1) 
Here the total number of valleys 6N  for n-Si 

and 4N  for n-Ge (see Fig. 1).  The vector 
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is the microscopic velocity of a-carriers and )(a
k
  is their 

dispersion law.  The right part of Eq. (1) is the collision 
integral for a-carriers. In this paper, we take into 
consideration interaction of band electrons with 
uniformly distributed charged impurities, equilibrium 
longitudinal acoustic phonons and carriers belonging to 
all valleys in the conduction band.   

3. Balance equation and kinetic coefficients

Applying to both sides of Eq. (1) the operator

 kdk


33)4/1( ,

one obtains a set of exact balance equations for dynamic 
and statistic forces: 
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Here (see [ 1, 7 ])
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Fig.1 
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For n-Si and n-Ge the term )()( HC a


equals to zero. 
)(an is the density of electrons from a-group. Here 

Nnn a /)(  .
Our next step is the choice of appropriate models 

of non-equilibrium distribution functions )(a
k

f  . As a 

model for a-group we accept the Fermi function with an 
argument containing the shift of velocity 
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    by the correspondent drift 
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is the equilibrium distribution function for a-carriers and 
)(a

k
  is their dispersion law.  

Using the form (5) and carrying out linearization 
of forces in Eqs (3) and (4), we obtain: 
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Matrices  )(~ aV  for n-Si and n-Ge will be shown 
below.

For simplicity of calculations we assume
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and use the following simplified forms (see Refs [1, 7]):  
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Now, Eq.(7) can be presented in the form
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Introduce the Hall constant HR  by the relation
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It follows from Eqs (20), (22)  (26):
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Note that the value (27) does not depend on any specifics of external scattering system. This result does not also 
require to use a specific model for the nonequilibrium distribution function; it is the sequence only of approach of 
linear approximation over the drift velocity.

4. Galvanomagnetic effects in n-Si

For six valleys of n-Si (see Fig. 1)
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Fig. 2.

Fig. 3.
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One can see from expressions (26), (31), (32) that 
the Hall constant RH at 0H  depends only on two 
ratios: mm /||  and  / . Obtained here formulae show 

also that for negligible e-e-drag  (q  1) the value RH  in 
contrary to the standard result (see Ref. [3]) depends 
only on the ratio  mmL /|| . The same results will be 

obtained below for n-germanium.
As an external scattering system, we consider here 

equilibrium longitudinal acoustic phonons and charged 
impurities with the density In . In the course of 

numerical calculation of the value    we assume 

Inn   and udA  )2/1( . Here d and u  are 
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Fig. 2 shows calculated dependences of the Hall 
constant RH and longitudinal conductivity H   on the 
intensity of external magnetic field H for band electrons 
in silicon. Here 000 /  ecmH . The ratio 1/ 0 HH
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g101.9 28
0

m , ).10 12
0 s  Then (see above Eq. (9)) 

0/ HHG  , where  1
00 )/( 

 me . In this figure 

and farther   /ne ; curves 1 relate to the case 

0  (intervalley drag was involved in consideration), 

curves 2  0  (intervalley drag is out of 

consideration). 
One can see from Fig. 2 that at small magnetic 

field ( 0HH  )  

)0()0(  HH RR  ,  )0()0(  HH .

At moderate and high magnetic fields one obtains 
the contrary relations: 

)0()0(  HH RR  ,  )0()0(  HH .

In Fig. 3 we show calculated dependences of 

HRenc  on the dimensionless Fermi energy 

TkBF /  for the limit case 0H . Here stroke 

lines )(SiW  relate to the case 0  (intervalley drag is 

excluded from consideration). We used here the 
expression following from Eq. (26): 

  0
1

2
)0,0(

)0,0(

1

)0,0(






Gzy
zz

H

MG
M

HRencW

 .                     (33)

It follows from Eqs (33) and (29 ):

871.0
)21(

)2(3

)23(

)1)(3(3
22

)( 









L

LL

p

pp
W Si .            (34)



Semiconductor Physics, Quantum Electronics & Optoelectronics, 2009. V. 12, N 4. P. 349-356.

© 2009, V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine

353

Note that the expression (34) contrary to the 
standard result (see Ref. [3]), does not contain 
characteristics of an external scattering system and can 
be considered as an exact relation (for the adopted above 
limit of linear approximation of terms in balance 
equation).

One can see from Fig. 3 that intervalley drag 
introduces negligible contribution, when 7 .

5. Galvanomagnetic effects in n-Ge

For four valleys of n-Ge  (see Fig.1) the matrices )(~ aV
in Eq. (8) have the following forms:
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It follows from Eqs (20):
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Here,   1q  ,  3/)1(  Lr . Then, in 

accordance with Eqs (23) and (36 ),

Introducing this matrix S
~

  to Eq. (22), we find the 
matrix ),,( GqrM  : 

222

222

3)32(2)21()21(

43

rrrkrkGr
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M xx
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

  ;

0),,(  GkrMMMM xzzxxyyx ;

;
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)],,()[1()],,()1(1)[,,(
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;
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),,(
22 GqrbqGqrkqG
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(38)
here,

22 )3()2(

2
),,(

rqqrqG

qr
Gqrk




  , 

22

22

)3()2(

43
),,(

rqqrqG

qpqr
Gqrb




  .

Fig. 4 relates to band electrons in germanium and 
presents dependences of the Hall constant  RH  and 
longitudinal conductivity H  (see Eqs (25) and (26)) on 
the intensity of magnetic field  H .

Fig. 4 shows that at low magnetic field ( 0HH  )  

)0()0(  HH RR  ;  

at moderate and high magnetic fields, we have the 
contrary relations: 

)0()0(  HH RR  .

For an arbitrary intensity of magnetic field
)0()0(  HH  .

It is worthy to note that intervalley drag 
manifests itself in germanium better than in silicon. It is 
related with higher anisotropy of germanium valleys. 

Fig. 5 shows calculated for n-Ge dependences of 

HRenc  on the dimensionless Fermi energy for the limit 

case 0H . Here stroke lines )Ge(W  relate to the 

formal case 0  (intervalley drag is excluded from 

consideration). For n-Ge 

261.0
)2(

)21(3

)143(

)31)(21(
222

2
)Ge( 









L

L

rr

rr
W .         (39)

Note again that expression (39), as the expression 
(34), in difference of standard result (see Ref. [3]) does 
not contain characteristics of external scattering system 
and can be considered for adopted above limit of linear 
approximation for balance equations as exact relation. 
Intervalley drag is not actual at 7 .
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Fig. 5.

Fig. 6.

6. Calculation of the Hall-constant in 
-approximation

 Now we present results of investigation of the Hall-effect 
in electron germanium and silicon obtained using the 
traditional -approximation for collision integral in kinetic 
equation (see for instance Ref. [3]). The well-known result 
for lowl magnetic field has the following form:

2

2
)( )()0(




 LHRenc A
H ,                                  40)

where r
BTk )/()( 0  , angle brackets represent 

averaging over the energy and 

2)21(

)2(3
)(

L

LL
L




 .                                         (41)

Carrying out averaging proposed in [3], one 
obtains:

2
2/1

2/12/12
22

2

)]([
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)]2/5([

)2/5()2/52(
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
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



r

r

K

KK

r

r
 .

Here   is gamma-function, and








0

)exp(1
)(

d
K

c

c  .

In n-Si 871.0)(  L , in n-Ge 786.0)(  L . If 

scattering by charged impurities is dominating,  
)(

00
imp  and 2/3r  . Then

2
22/12/7

22 )](/[)()()8/3(/  KKK  .        (42)

If scattering on longitudinal acoustic phonons 

dominates, )(
00
Ac  and 2/1r . Then 

2
02/12/1

22 )](/[)()()512/345(/   KKK .

(43)
One can see from Eqs (40) – (43)  that the value 

)0( HRenc H depends here on the mechanism of 

scattering and on dimensionless Fermi energy  .

Intervalley drag in the framework of -approximation is 

evidently out of consideration.

Fig. 6 shows separating lines presented by the 

condition 1/ )(
0

)(
0  Acimp . The line 1 relates to n-Si, the 

line 2  n-Ge.  Above the corresponding line 

1/ )(
0

)(
0  Acimp .

7. Discussion

Now compare results obtained for the method of balance 
equations and that of -approximation.

Solid lines in Fig. 7 show dependences of  the 
value  )0( HRenc H  on the energy   obtained by the 

-method for two different mechanisms of relaxation. 
These curves correspond to formulae (40), (42) and (43). 

The stroke lines )(SiW and )(GeW in Fig. 7 represent the 
same value )0( HRenc H  but calculated using the 

method of balance equations (see Eqs (2)) applying the
formulae (33), (34) and (35) (that is for the case 0  , 
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Fig. 7.  

Fig . 8.

when intervalley drag is excluded from general 
consideration). 

Fig. 8 relates to dominating contribution of acoustic 
phonons. Here, solid curves marked as BE represent 
results obtained using balance equations for the case 
when intervalley drag is  involved in consideration 
( 0 ); the lines W correspond to the same way but for 

the case 0 . Dashed curves marked by the letter   
represent solid lines in Fig. 7, which relate to the case 

2/1r .
One can see from Figs 7 and 8 that the 

difference between results obtained by two different 
methods of consideration is impressive.
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