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Abstract. A comparison of two different models for simulation of submicron GaAs 
MESFETs static characteristics has been made. A new two-dimensional numerical model 
is presented to investigate the submicron field-effect transistor characteristics, the 
influence of the geometry of the component, like the inter-electrode distance, on the 
capacities. All simulation revealed the existence of a high contact electric field near the 
gate, which creates a depopulated zone around the gate, but the preceding studies have 
neglected the edge effects, which are very significant for the submicron MESFETs.
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1. Introduction

GaAs metal-semiconductor field-effect transistors 
(MESFETs) are widely used for microwave and digital 
applications because of their superior high frequency 
characteristics [1-4]. Simulation of GaAs-based 
nonlinear circuits necessitates the use of an accurate 
MESFET model, if the predicted and achieved circuit 
performances are closely correlated. In device 
fabrication, one usually starts with a computer 
simulation of the device or the circuit to be made.

The development or improvement of new dies of 
components requires means for the modeling, realization 
and characterization. It is thus very significant to 
predetermine the characteristic of the component, 
physical modeling finds here one of its principal 
applications. Taking into account the complexity of 
operation of a field-effect transistor to the submicron 
gate, according to the application chosen, the 
optimization of the component according to the 
geometrical and physical parameters is not possible 
by only an experimental approach [2, 8]. It is 
imperative to understand the phenomena, which 
exist, the variation of only one technological 
parameter being able to have various consequences 
on the characteristics and possibilities of the field-effect 
transistor. Those are not easily analyzable without a 
precise determination of the internal parameters that 
govern them [3, 4].

The designer of the components must know the 
influence of the technological parameters, so that he 
can envisage their influence on the behavior of the 
device, in particular when it is a question of 
monolithic integrated microwave circuit [5-8].

The output characteristics of a GaAs MESFET can 
be simulated by using two modeling techniques: 
1) numerical models and 2) physical models. Considered 
in this paper is a two-dimensional model based on an 
analytical solution of the Poisson equation.

This paper investigates the gate-bias dependence of 
a field-effect transistor to the gate submicron depth of 
the depopulated zone. The influence of the edge 
effects on the profile of the depopulated zone as well as 
capacities and charge distribution is investigated.

We have made two-dimensional simulation of the 
component with field effects considering the effect of 
the edge and the real position (source, gate, and drain) 
of our structure (Fig. 1). Since then there have 
been a number of theoretical papers, but a lot of them 
uses the one-dimensional modeling [3, 9].

Nomenclature
Vgs – gate-to-source voltage
Vds – drain-to-source voltage
Uth – threshold voltage
N – doping density of the channel
 – permittivity of GaAs
Vb –  Schottky barrier height
d – Debye length 
q – electron charge
a – width of the active layer

2. Analytical model

Fig. 1 shows a normal planar field-effect transistor 
simulated in this study. We use the analytical model 
determined by [2], this model is based on the Green 
function:
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Fig. 2. Scheme of discretization of the structure.
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Fig. 1. The structure of the flied-effect transistor.

 00 , yyxxG ,

(1) 
where  yx, – point of observation
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2.1. Shockley approximation 

The Shockley approximation allows to express the width 
of the depletion layer through Vgs and Vds
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where hs is the depth of the depletion layer on the side of 
source.
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where hd is the depth of the depletion layer on the side of 
drain.
And

Vp = Ut.  (4)

2.2. The potential

Poisson’s equation in all space if considering the 
quasi-static mode is given by:
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2.3. Simulation

Fig. 3 shows the simulation program.
– The potential V represents the applied potential 

VG plus the potential of barrier Vb.
– Calculation of the limit of the depopulated zone 

is made by combining the equation (3) with the 
following hypotheses: 
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Fig. 3. The simulation program.

– V(x, y) = V on the metal conductor,
– V(x, y) = 0 on the profile of the depopulated zone. 
It results in a system of non-linear equations. 

Resolving them by the method of moments (Fig. 3) 
allows to know the depopulated zone profile in the 
discredited form as well as the electric charge 
distribution.

We use an initial vector determined by the one-
dimensional approximation by Shockley (2), (3).
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Fig. 4. Depth Y of the depletion layer.

3. Results 

The observed characteristics along with the results 
simulated using our model and the Schokley model are 
shown in Figs 4, 5, 6 and 7. Variation of the depopulated 
zone with gate bias determined by our model has been 
compared with those given by the one dimensional 
model. Fig. 7 shows variation of the gate bias with the 
charge density. So, the Shockley approximation 
neglecting the edge effect that is taken in our model we 
show in Figs 4, 5 and 6.
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Fig. 5. Depth Y of the depletion layer. 
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Fig. 7. Variation of the gate bias with the charge density.

4. Conclusion

This algorithm has been developed for simulation of 
static characteristics in submicron MESFETs. 
Simulation which we have realized gives variation in the 
height of the channel or the thickness of the depopulated 
zone with variation of the voltage applied to the gate, 
and thus allows to control the current across the 
component when taking into account of exact geometry

of the component. Then, we proved that the one-
dimensional [3, 9, 10] model gives the results with a 
very low precision, especially for the high gate bias. We 
can use our results for determining the static 
characteristics for the field effect transistor (like 
capacities, resistance, conductance of channel, …). We 
think that our results can contribute to designing the 
field-effect transistors in planar technology, and to 
consequent reducing the manufacturing cost of the 
component.
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