Approaching to an optimal value of rise time in n-well/p substrate photodiode by controlling depletion layer width

Emad Hameed Hussein
Dept. of Physics, College of Science,
Al-Mustansiryia University, Baghdad, Iraq
E-mail: emadh67@yahoo.com

Abstract. The relationship between response speed of a silicon n-well/p substrate photodiode and the depletion layer width has been investigated. Variation of both the junction capacitance and the series resistance of the photodiode with the depletion layer width have been analyzed. It is shown that the contribution of the time constant and the drift time in the rise time within the depletion layer can be decreased to an optimal value (less than 1 ns) just for specific value of the depletion layer width and smaller value of the diffused junction area.

Keywords: silicon photodiode, n-well/p junction, p-n junction, capacitance junction, series resistance.

1. Introduction

With the advances in technology over the past few years, it has become possible to fabricate high speed optoelectronic devices such as photodiode. High speed photodiodes play an important role in optical communication [1] and measurement systems [2], and hence they attract attention of researchers [3-5]. Unfortunately, realistic photodiodes have finite speed of responsivity. So, for a fast response time, through the fabrication process of the photodiode, impurity concentration and operating voltage must be chosen to give a depletion layer width so that the junction capacitance can cause as possible as short time constant. While many applications of photodiodes depend on thinner depletion region, others need to maximize thickness of the depletion region [6]. However, the series resistance which is due to bulk and contact resistances, and is usually only a few ohms, has an active role in the photodiode responsivity. Almost, the contacts are decreased by different methods like ion implantation [7] or by using titanium silicide [8], etc. The depletion layer is no longer dominating the series resistance as long as the substrate width is much larger than its width and hence a small resistivity semiconductor and small diffused junction area are required for lowering the series resistance. Although there are different semiconductor materials, silicon are commonly used to fabricate p-n photodiodes for visible and near infrared region [9-12], as it was chosen in this research.

2. Experimental

In n-well/p substrate photodiode the depletion region is always wider than that for p-n junction photodiode, because concentration levels of the n-well and the p-substrate are relatively low. Anyhow, structure of photodiode is essentially similar to p-n junction diode except it has a transparent window can receive light through it. The photodiode model adopted in this research is similar to the model proposed by Swe and Yeo [8]. It is a p-substrate silicon type with resistivity $\rho = 7.5$ Ohm·cm and a phosphorus n-well mask was implanted, as shown in Fig. 1. Arsenic implant and BF2+ implant were used to form the n$^+$ and p$^+$ regions, respectively, which are used as the cathode and anode contacts, respectively. Hence, a p-n junction is formed between p-substrate and n-well region.

3. Results and discussion

The depletion layer width at thermal equilibrium for a one sided abrupt is given as [13]

$$W_D = \frac{2\varepsilon_s}{qN} \left(V_b - V - \frac{2KT}{q} \right)$$

(1)

where ε_s is the relative permittivity of the semiconductor, q is the electron charge, K is the Boltzmann constant, T is the absolute temperature, V_b is the built-in-potential, V is the applied voltage and N is...
the impurity concentration (N is N_A, if $N_A >> N_D$ or vice versa where N_A is the accepter concentration and N_D is the donor concentration). For silicon model $\varepsilon_S = k_S \varepsilon_0$, where ε_0 is the permittivity of free space (8.85 pF/m) and k_S is silicon dielectric constant (11.68). By substituting these values and electron charge q in Eq. (1), it becomes

$$W_D = \frac{12.921}{N} \left(\frac{V_b - V - \frac{2kT}{q}}{q} \right) \mu m$$

and so we can plot the depletion layer width (W_D) as a function of impurity concentration (N) for values changes from 10^{14} cm^{-3} to 10^{18} cm^{-3} and for different values of $(V_b - V - \frac{2kT}{q})$ changes from 1 V to 10 V, as shown in Fig. 2.

Capacitance of the depletion layer of the photodiode is given in terms of the depletion layer width as

$$C_D = \frac{\varepsilon_S A}{W_D} = \frac{\varepsilon_S A}{W_D},$$

where A is the diffused junction area. By substituting the value of ε_S in Eq. (3), it becomes

$$C_D = 103.368 A \frac{A}{W_D} \text{ (pF)},$$

where A is measured in mm2. From Fig. 2 the values of W_D varies approximately from 0.03 µm to 12 µm. Thus, plotting the depletion layer capacitance as a function of the depletion layer width for different values of A which changes from 1 mm2 to 20 mm2 with increment of 1 mm2 gives the graph shown in Fig. 3.

Fig. 1. Side view of the photodiode.

Fig. 2. The variation of the depletion layer width as a function of the impurity concentration at 300 K.

Fig. 3. The variation of the junction capacitance as a function of the depletion layer width at 300 K.
In p-n photodiode the series resistance \(R_s \) is considered an important factor of determining its response time, as it will be demonstrated later. The value of \(R_s \) is given as

\[
R_s = \frac{(W_s - W_D)p}{A} + R_n + R_C, \tag{5}
\]

where \(W_s \) is the substrate thickness which was chosen to be 100 \(\mu \)m, \(R_n \) is the resistance of the n-well region and \(R_C \) is the contact resistances. As illustrated in Fig. 1 \(R_C \) is composed of \(R_n \) and \(R_a \); the anode and cathode resistances respectively, that is

\[
R_C = R_n + R_a. \tag{6}
\]

Substituting Eq. (6) in Eq. (5) and rearranging it, we get

\[
R_s = \frac{(W_s - W_D)p}{A} + R_K, \tag{7}
\]

where \(R_K = R_n + R_a + R_c \). \tag{8}

Because of \(R_n, R_a \) and \(R_c \) characterize resistances out of the depletion layer, their values are independent of the values of first right term of Eq. (7). The resistance \(R_n \) is n-well dimension dependent, so it has a constant value. Furthermore, the values of both \(R_a \) and \(R_c \) may be as possible as minimized during fabrication of the photodiode, as has been mentioned above. Therefore, they may be measured experimentally and then added to the theoretical value of \(R_s \) as a correction factor. Thus Eq. (7) is reduced to

\[
R_s = \left(100 - W_D\right)\times 0.075/A + R_K \text{(Ohm)}. \tag{9}
\]

The dependence of \(R_s \) on \(W_D \) for different values of \(A \), which is changed from 1 mm\(^2\) to 10 mm\(^2\) with \(R_K \) about 5 Ohm, is depicted in Fig. 4.

There are three factors defining the response time of a photodiode: drift time \(t_{\text{drift}} \), diffusion time \(t_{\text{diff}} \) and time constant \(t_{\text{RC}} \). The total rise time is determined by:

\[
(t_r)^2 = (t_{\text{RC}})^2 + (t_{\text{drift}})^2 + (t_{\text{diff}})^2, \tag{10}
\]

where the time constant is given as

\[
t_{\text{RC}} = 2.2(R_s + R_L)(C_D + C_S), \tag{11}
\]

where \(R_L \) is the load resistance, and \(C_S \) is the stray capacitance which can be minimized by using short leads. Thus, Eq. (11) becomes

\[
t_{\text{RC}} \approx 2.2(R_s + R_L)C_D. \tag{12}
\]

Substituting Eq. (4) and Eq. (9) in Eq. (12) results

\[
t_{\text{RC}} = 0.2274096 \times \left[\left(100 - W_D\right)\times 0.075/A + R_K\right] \times \frac{A}{W_D}. \tag{13}
\]

The drift time \(t_{\text{drift}} \) for silicon is given as

\[
t_{\text{drift}} = \frac{W_D}{V_d}, \tag{14}
\]

where \(V_d \) is the average drift velocity of the carriers which is 1·10\(^3\) cm/s for silicon at 300 K. By substituting this value in Eq. (14), it becomes

\[
t_{\text{drift}} = 0.01W_D(\mu \text{m} \text{)(ns)}.	ag{15}
\]

Figure 5 illustrates the variation of \(t_{\text{RC}} \) with the depletion layer width for different values of load resistance from 10 to 50 Ohm and the diffused junction area of 5 mm\(^2\) as well as the variation of \(t_{\text{drift}} \) with the depletion layer width.

Because the research concerns what happens inside the depletion layer, the diffusion time \(t_{\text{diff}} \) is out of our study. So, plotting \((t_{\text{RC}})^2 + (t_{\text{drift}})^2 \) has just been adopted and shown in Fig. 6.

Figure 7 illustrates superposition of the two graphs of \(t_{\text{RC}} \) and \(t_{\text{drift}} \) to produce the third graph denoted by \(\sqrt{(t_{\text{RC}})^2 + (t_{\text{drift}})^2} \) which is the first two terms of \(t_r \) in Eq. (10).

As shown in Fig. 2 the depletion layer width much decreases with increasing the impurity concentration and decreasing reverse applied potential and vice versa. That is because increasing or decreasing of the concentration of diffusing charge carriers between both sides of the junction. Of course, the narrowest depletion layer causes largest capacitance when the area of the diffused layer is so large, as illustrated in Fig. 3. On the other hand, since
the substrate thickness is always much larger than the depletion layer thickness, the last one has no longer effect on the series resistance. Therefore, with minimum value of the contacts resistance, the series resistance may be changed few milliohms, as shown in Fig. 4. Thus, the time constant of the photodiode, which is due to series resistance and its total capacitance as well as the load resistance, depends on the depletion layer width. With small value of the load resistance and small diffused junction area, the time constant may be minimized by increasing the depletion layer width due to its effect on the junction capacitance, as has been stated.

Fig. 5. The variation of t_{RC} and t_{drift} with the depletion layer width.

Fig. 6. The variation of $(t_{RC})^2 + (t_{drift})^2$ with the depletion layer width.

In contrast, the drift time increases linearly with the depletion layer width, because of decreasing the electric field within it, and intersects the time constant curves, as illustrated in Fig. 5. So, adding their quadratic values results in the curves shown in Fig. 6 in which the minimum value of each curve lies at the same point of their intersection. That means, the minimum values of them lie at specific values of the depletion layer width.

Returning to Fig. 7, for $R_L = 10$ Ohm and $A = 5 \, \text{mm}^2$, one can see that the plot of the square root of quadratic t_{RC} plus quadratic t_{drift} is a curve starts from the highest value of t_{RC} corresponding to the minimum value of the depletion layer width and finishes at the highest value of t_{drift} corresponding to the maximum value of the depletion layer width. Also, its minimum value (0.59 ns) lies at the intersection of both curves, i.e. at 42.4 µm. Further, for $A = 1 \, \text{mm}^2$ the minimum value becomes 0.31 ns at depletion layer width of 21.8 µm.

4. Conclusions

Since the junction capacitance of the photodiode is dependent on the depletion layer thickness, the diffused junction area and the applied reverse bias, the minimum value of contribution of both the time constant and the drift time in rise time, are obtained at specific value of the depletion layer width which is corresponding to smaller diffused area, and larger applied reverse bias. Furthermore, for values less than that value of the depletion layer the contribution of the time constant
dominates the rise time value whereas the contribution of the drift time dominates the rise time for values more than the specific value of the depletion layer. In other words, it is possible to reach an optimal value of the rise time by controlling the depletion layer thickness through the fabrication process of the photodiode.

References