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Abstract. We consider the crisp and fuzzy partitioning techniques of cluster analysis 
bearing in mind their application for classification of data obtained with chemical sensor 
arrays. The advantage of the cluster analysis techniques is existence of a parameter S(i). 
This parameter gives quantitative efficiency of classification and can be used as 
optimization criterion for sensor system as a whole as well as the measurement 
procedure. The crisp and fuzzy techniques give practically the same result when 
analyzing the data that cluster uniquely. It is shown that big value of the parameter S(i) is 
not sufficient for adequate data partitioning into cluster in more complicated cases, and 
the results of clusterization for the above techniques may diverge. In this case, one 
should apply both techniques concurrently, checking the correctness of partitioning into 
clusters against the principal component analysis.  
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1. Introduction  

The development and fabrication of an electronic analog 
to biological nose is one of the most interesting practical 
tasks of modern science. In recent years, much progress 
has been achieved in this area. Now there are many 
developments and commercial devices called Electronic 
Noses (EN) [1]. However, contrary to biological nose that 
provides an organism with all necessary information on 
the character of odors from its nearest neighborhood, EN 
gives partial information only. Indeed, the multisensor 
arrays that serve as basis for EN have a certain selectivity 
profile. Therefore, each device of that type can be applied 
to solve only limited range of tasks. 

Choice of the most efficient sensor array for 
solution of a specific problem is one of the most 
important tasks in optimization of EN-type devices. 
Various generalized mathematical models [2-4], 
statistical approaches [5, 6], estimations of information 
content via the Fisher information [7, 8], predictions 
based on system dynamic behavior [9] etc. have been 
proposed in this area and successfully demonstrated in 
many cases [9]. All the above approaches are based, up 
to a point, on statistical calculations most of which use 
the cluster analysis techniques. When classifying data, 
various versions of pattern recognition procedures are 

used to predict the properties of an object that were not 
measured directly (chemical composition) but are related 
indirectly to measurements via unknown or 
undetermined interrelations. 

To estimate the device operation efficiency when 
solving a task, one should define a criterion for such 
estimation. The objective of any EN-type sensor system 
is classification with further recognition of the objects 
studied (generally, these are multicomponent mixtures). 
Strictly speaking, just classification efficiency could 
serve as criterion of array optimization. Moreover, 
having a quantitative estimate of classification 
efficiency, one could optimize not only the array itself 
but the measurement procedure as well, thus ensuring 
the choice of the most informative part of response. 

However, only some techniques of cluster analysis 
make it possible to estimate classification efficiency 
quantitatively. In this work, we consider the partitioning 
techniques of cluster analysis from the viewpoint of their 
application for classification of data from multisensor 
arrays. The advantage of these techniques is existence of 
a parameter S(i) that expresses the classification 
efficiency quantitatively. We consider appropriateness of 
this parameter as criterion of sensor array optimization. 
The peculiarities of application of partitioning methods 
in sensor technique are also considered. 
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2. The partitioning methods of cluster analysis 

Classification means partitioning of a set of objects or 
observations into uniform groups (clusters) whose 
elements are similar, while there are quantitative 
distinctions between elements belonging to different 
clusters [10]. Thus, the objective of cluster analysis is 
structuring the multidimensional input data and 
attribution of every object from the given set to one of 
the clusters. The classical methods of cluster analysis 
(crisp techniques) lead to partitioning of the data set into 
clusters with well-defined boundaries. This means that, 
whatever the input data, they should be ascribed to a 
certain class. Contrary to the crisp techniques, those 
based on the concept of “fuzzy logic” calculate a 
membership for each object, which indicates how 
strongly the object belongs to a cluster. Thus, 
assignment of an object to a certain class is presented as 
something true up to a point only. 

Different techniques of cluster analysis are 
integrated into most of the modern software packages 
used for statistical data processing. This makes 
application of such packages simple and obvious. In this 
work, comparison of the results of data classification for 
multisensor arrays is made using the S-PLUS software 
environment, with the partition around medoids (PAM) 
and cluster analysis in the fuzzy logic format serving as 
examples. 

Let us start consideration with PAM. This 
technique belongs to the crisp methods: each object is 
assigned to one cluster only. The technique is based on 
search for a certain number of representative objects 
called medoids. The latter are chosen in such a way that 
the dissimilarities between all objects and their nearest 
medoid are minimal. The number of clusters is set by the 
user. S-PLUS has an option of visualization of the 
results of objects partitioning into clusters through 
construction of a cluster plot (clusplot). 

For each i-th objects, a parameter s(i) is calculated, 
which characterizes quality of that object clusterization. 
Let us dwell on the physical sense of that parameter, 
without going into details [11]. The value of s(i) may be 
interpreted in the following way: 
 s(i) ≈ 1 – the i-th object is classified well (into the 

given cluster); 
 s(i) ≈ 0 – the i-th object is between two clusters; 
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 s(i) ≈ -1 – the i-th object is classified badly (be-
longs to another cluster rather than the given one). 
The s(i) values for all objects are plotted in a 

special diagram (the so-called silhouette plot). In this 
case, all the objects are partitioned into groups, 
depending on their assignment to a certain cluster. The 
average value S for all clusters in the silhouette plot is a 
parameter that characterizes quantitatively the 
classification quality as a whole (for all objects). It is 
this parameter that may be applied for optimization of 
sensor arrays. 

Now let us consider the fuzzy partitioning 
technique that is based on the concept of “fuzzy logic”. 

Contrary to PAM where assignment of an object to a 
certain class is either 0 or 1, in the fuzzy partitioning 
technique it may take any value from 0 up to 1. The 
results of analysis with the fuzzy partitioning technique 
also may be presented as a clusplot and silhouette plot; 
to this end, the closest crisp partitioning is chosen. As a 
rule, the results obtained with fuzzy partitioning and 
PAM are the same, if separation of the objects into 
classes is sufficiently unambiguous. If, however, there 
are some objects in a data array whose assignment to a 
certain class is not well-defined, then different 
techniques may give different results. Therefore, it 
seems to be of importance that comparative analysis of 
adequacy of these data classification should be made 
with the crisp as well as fuzzy techniques. 

3. Experimental 

A set of experimental data was obtained using an array 
of three QCM sensors (AT-cut quartz resonators with 
resonance frequency of 10 MHz) modified with 
phthalocyanine (H2Pc, CuPc, PbPc) films 100 nm thick. 
The following analytes were used: (1) ethanol; (2) 
triethylamine; (3) propylamine; and (4) water. Three 
repeated measurements were performed with each 
analyte. For the features of the measurement procedure 
as well as the experimental set-up design see [12]. 

4. An example of application of PAM and fuzzy 
partitioning 

Figure 1 shows, as an example, the typical experimental 
curves for three sensors exposed to ethanol vapor (these 
curves were used in further calculations). Table 1 
presents the normalized values of sensor responses, Snm, 
at a moment t = 35 s since the beginning of 
measurements: 

∑
=

n
nm

nm
nm F

FS . 

Here, Fnm is the response of the n-th sensor (taken 
in the m-th measurement) to the same analyte; m = 1…3 
numbers of measurements, while n = 1…3 numbers of 
sensors. 

As was noted earlier, availability of a priori 
information on the number of classes is presumed when 
applying the cluster methods. At the same time, in many 
cases it is necessary to evaluate data quality bearing in 
mind possible classification (how the data are clasterized 
per se). To solve this task, one usually applies the 
principal component analysis (PCA) [10]. This makes it 
possible to project the response space onto a plane with 
minimum distortions, visualize the data in the 
transformed space of sensor coordinates, and estimate 
qualitatively the degree of inherent data clusterization. 
The data from Table 1 obtained with PCA are presented 
in Fig. 2. (The numbers correspond to those of 
experiments.) 
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Table 1. Normalized sensor responses Snm at t = 35 s since 
the beginning of measurement. 
 

Analyte Measureme
nt # Sensor 1 Sensor 2 Sensor 3 

1 0.316058 0.270269 0.413674
2 0.274731 0.273789 0.451479Ethanol 
3 0.311210 0.280612 0.408178
4 0.133913 0.564111 0.301976
5 0.154681 0.564090 0.281228Triethylam

ine 
6 0.149661 0.553314 0.297026
7 0.322383 0.205610 0.472007
8 0.294352 0.211957 0.493691Propylami

ne 
9 0.298338 0.202595 0.499067
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One can see from Fig. 2 that the objects (4, 5, 6) – 
triethylamine – make a clearly pronounced separate 
group. The object 2 (ethanol) is closer rather to the 
group (7, 8, 9) than its own class (1, 3). This fact makes 
the task of its correct classification much more difficult. 
We used intentionally the data whose classification is 
not apparent. Our aim was to demonstrate the fact that, 
in such a situation, two different cluster analysis 
techniques may give different results. 

Shown in Fig. 3 are the silhouette plot and clusplot 
constructed with PAM using the data from Table 1. One 
can see that the object 2 (ethanol) is assigned to the class 
(7, 8, 9) - propylamine, just as according to PCA, i.e., its 
classification is wrong. In fact, negative s(i) value for 
this object suggests that it belongs to another class rather 
than this one. 

Figure 4 presents a silhouette plot constructed with 
the fuzzy partitioning technique using the same data. In 
this case, all the objects are in their own classes. One can 
see from Fig. 4 that just the second technique gives 
correct classification. This is in spite of the fact that S 
takes a bigger value in the first case rather than the 
second one (0.67 for PAM and 0.66 for fuzzy 
partitioning). Thus, one can state that bigger S value is a 
necessary but not sufficient condition for correct data 
classification. 
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Fig. 1. Responses to ethanol vapor of QCM-sensors coated 
with 100 nm films of phthalocyanines (H2Pc, CuPc and PbPc). 

 
Fig. 2. PCA plot related to the responses of a three-sensor 
array to ethanol, triethylamine and propylamine. 
 
 

It should be noted that analysis of different 
situations with data classification for multisensor arrays 
testifies unambiguously that one cannot say in advance 
what technique (crisp or fuzzy) will be more appropriate 
for consideration of a specific case. Therefore, it seems 
reasonable to perform classification using both 
techniques in parallel to improve reliability of results. In 
this case, the PCA method can serve for both 
visualization and check of the results given by the 
cluster analysis techniques because, contrary to the 
partitioning techniques, it does not require availability of 
a priori information on the number of clusters. 

5

4

6

2

7

9

8

1

3

0.0 0.2 0.4 0.6 0.8 1.0
Silhouette width

Average silhouette width :  0.67

a

-2 -1 0 1 2

Component 1

-0
.4

-0
.2

0.
0

0.
2

0.
4

C
om

po
ne

nt
 2

These two components explain 100 % of the point variability.

b  
Fig. 3. Silhouette plot (а) and clusplot (b) constructed 
according to PAM using sensor responses to ethanol, 
triethylamine and propylamine. 
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Fig. 5. The classification efficiency curves S(t) constructed 
using the sensor array responses to analytes: 1 - ethanol, 
triethylamine and propylamine; 2 - water, triethylamine and 
propylamine. 
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Fig. 4. As in Fig. 3 but made with the fuzzy partitioning 
technique. 

 
 

5. Use of parameter S for optimization of sensor 
array and measurement procedure 

The parameter S can serve not only for array 
optimization (i.e., for comparison of efficiencies of 
individual sensors in an array) but for choice of the most 
representative (i.e., ensuring the best classification) 
region of response surface as well. Classification 
efficiency may vary considerably in the course of time 
of measurement. The reasons for this are the effects of 
kinetic discrimination, on the one hand, and those of 
reproducibility (different portions of adsorption curve 
are affected differently by the external factors), on the 
other hand [13]. Indeed, the calculation of S value for 
every instant of time of experiment makes it possible to 
obtain time dependence of classification efficiency, S(t). 

Shown in Fig. 5 are the examples of such 
dependences for classification of two sets of analytes: 
ethanol, triethylamine and propylamine (curve 1) and 
water, triethylamine and propylamine (curve 2). The 
same multisensor arrays were used in both cases. Such a 
presentation makes it possible to determine the most 
informative (from the viewpoint of analyte distinctive 
features) part of array response with respect to any of the 
analytes used. To illustrate, for the first set of analytes, it 
seems more reasonable to consider the stationary 
response amplitudes (the peak of S(t) dependence is in 

the saturation region of the adsorption curves). At the 
same time, for the second set of analytes (that differed 
from the first one by a single analyte only), the peak of 
discrimination efficiency is observed in the kinetic 
region. (Note once more that the same multisensor array 
was used in both cases.) 

Of course, the curve S(t) can be used only after 
check for classification adequacy in different points of 
the curve. To this end, one should construct silhouette 
plots for sampling instants using the partitioning 
techniques. It is expedient to recall here that, as shown 
earlier, PAM gives wrong classification for the first set 
of analytes at t = 35 s (see Fig. 3). 

6. Conclusions 

The approaches of mathematical statistics and 
experiment optimization are widely used in analytical 
chemistry practice to obtain information from big 
analytical data arrays. The techniques of cluster analysis 
are necessary and extremely convenient tool for solving 
such tasks with respect to multidimensional data 
obtained with sensor arrays made for various purposes. 
As a rule, the results of classification obtained with the 
crisp and fuzzy techniques coincide. If, however, the 
data are classified ambiguously, it is reasonable to apply 
both approaches in parallel, checking the result obtained 
with PCA. In this case, availability of the parameter S 
makes it possible to use the cluster methods for sensor 
array optimization as well as choice of the most 
informative region of the response surface. This will 
enable one to increase efficiency of the analytical 
procedures based on multisensor arrays to solve various 
tasks of gas analysis via minimization of costs and time 
required for analytical signal measurement and 
extracting chemical information on analyte using the 
databases for reference specimens. 
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