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Abstract. Given in this paper are theoretical basics for correlation-phase analysis of laser 
images inherent to human blood plasma. Also presented are comparative results of 
measurements aimed at coordinate distributions of the module of complex degree of 
coherency (CDC) and complex degree of mutual polarization (CDMP) of laser images 
describing blood plasma of a healthy person as well as of a patient with prostate cancer 
of the first stage. The authors investigated both values and ranges of changing the 
statistical (moments of the first to fourth orders), correlation (coefficients of the Gramm-
Charlie expansion for autocorrelation functions) and fractal (slopes and dispersion of 
extremes for logarithmic dependences of power spectra) parameters for coordinate 
distributions CDC and CDMP. Determined are objective criteria for diagnostics of cancer 
changes in blood plasma of a patient with cancer.  
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1. Introduction  

Among the diversity of directions for optical diagnostics 
of biological objects, polarization methods are a most 
popular [1 – 39]. The latter are based on such 
fundamental conceptions as “matrix of coherency” and 
“degree of polarization” that describe the field of 
scattered radiation [1, 2]. These parameters characterize 
correlation similarity of orthogonal components 

 of electromagnetic wave amplitudes in 

separate points of optical field with coordinates 

( ) ( )rErE yx ,

( )r  [3]. 
In this sense, these analytical approaches will be 
considered as the “one-point” ones. They serve as a base 
for development of methods providing polarization 
mapping biological tissues (BT) and diagnostics of their 
pathological changes in structure (e.g., cancer of 
women’s reproductive organs) [13 – 15].  

        Wide application of modern laser technique in 
investigations of BT structures stimulates development 
of essentially new approaches to analysis and description 
of polarization-inhomogeneous fields of scattered 
coherent radiation. One-point methods got their 

development in a more general “two-point” approach 
based on the analysis aimed at the degree of coherency 
between polarization states of adjacent ( rrr Δ+11, ) 
points in the field of scattered radiation [4-11]. From the 
quantitative viewpoint, this correlation may be 
characterized with the value of module for complex 
degree of mutual polarization (CDMP) ( )rrrV Δ+11,  
[12]. In the works {13, 29], based on CDMP developed 
was the method of polarization-correlation mapping 
(PCM) for an optically-anisotropic BT structure. It was 
based on the analysis of coordinate distributions 
( )rrrV Δ+11, . As a result, the authors realized not only 

diagnostics, but also differentiation of severity inherent 
to oncological changes (precancer – cancer of the first to 
fourth stages) in tissues of woman’s reproductive sphere 
[18].  

On the other hand, there is a wide circle of weakly 
anisotropic biological liquids (BL) taken from a human 
organism, which are considerably more accessible as 
compared with BT samples that need a traumatic biopsy 
operation. From the physical viewpoint, BL are matter 
with a weak polarization modulation of laser radiation 
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[33, 35, 37]. Thereof, the task of using phase 
information contained in the field of radiation scattered 
by BL is topical. 

Our work is aimed at development and testing the 
two-point correlation-phase method in investigations of 
blood plasma in order to provide early diagnostics of 
oncological changes in human organs (e.g., prostate).  

2. Model conceptions 

As a basis for the analysis of phase structure inherent to 
the field of laser radiation transformed by blood plasma, 
we used the following model [13, 17, 18, 21, 22, 25, 28, 
32, 33, 35]:  

- blood plasma is considered as a two-component 
isotropic-anisotropic structure; 

- optically isotropic component is the fraction 
consisting of optically single-axis birefringent crystals of 
albumin and globulin amino acids; 

- phase properties of these biological crystals are 
characterized with the Jones matrix 

{ }
2221

1211

dd
dd

D = ,  (1) 

where  

( )
( ) ( ) ( )( )

( ) ( ) ( )( )(
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                             (2) 

Here,  is the direction of the optical axis; ρ

ndΔλ
π=δ 2  - phase shift between orthogonal 

components of the amplitude;  – wavelength; – 
geometric distance;  - birefringency coefficient.  

λ d
nΔ

3. Brief theory of the correlation-phase method 

As a basis for “two-point” correlation-phase method 
providing investigation of blood plasma, we used the 
conception of CDC for points of its laser image. The 
parameter  below characterizes correlation 
between orthogonal components ( ) of the 

amplitude of laser field in two points with coordinates 1r  
d 2r  

( 21, rrμ )

an

yx EE ,

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⋅
=μ

◊

),(),(
),()r,(

)r,(
2211

2121
21 rrTrWrrWTr

rrWrWTr
r . (3) 

Here  is the transverse spectral density 
matrix of the following form 

)r,( 21rW

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= ∗∗

∗∗

)()()()(
)()()()(

)r,(
2121

2121
21 rErErErE

rErErErE
rW

yyxy

yxxx , (4) 

where  is the Hermitian conjugate matrix to 
; T

)r,( 21rW ◊

)r,( 21rW r  - spur of the matrix. 
Let us write the expression (3) for laser field 

transformed by a biological crystal (relations (1) and (2)) 
in two its arbitrary points. In this case, the transverse 
spectral matrix (relation (4)) for the density of this field 
takes a look 

)()r,()()r,( 221121 rDrWrDrW inout ⋅⋅= ◊ .  (5) 

Here  and  are Jones matrixes for the 

biological crystal in the points  and ;  - 
transverse spectral density matrix for the probing laser 
beam 

)( 1rD )( 2rD

1r 2r )( 21 xxWin ,

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= ∗∗

∗∗

)()()()(
)()()()(

),(
2121

2121
21 rErErErE

rErErErE
rrW

yyxy

yxxx
in . (6) 

With account of the expressions (1) to (6), the 
expression ( )21, rrμ  takes the following look 

( ) .
))2exp(sin)(cos(

1,
1212

2
12

221
δΔ⋅−ρΔ+ρΔ+

=μ
iiba

rr
  

                           (7) 

Here, ( ) ( )2112 rr ρ−ρ=ρΔ , ( ) ( )2112 rr δ−δ=δΔ , 
and ( iba + ) is the coefficient of proportionality. 

The expression (7) shows a simultaneous 
dependence of the CDC value for blood plasma image 
both on the orientation ( ρΔ ) and phase ( ) structure 
of its polycrystalline network. To eliminate this 
ambiguity one can using laser probing beam with 
circular polarization. In this case, Exp. (7) is transformed 
into the only phase dependence   

δΔ

( ) ( ) )12(exp
1,

12
21 +δΔ−
=μ

i
rr . (8) 

In what follows (without losses in completeness of 
analysis), let us confine ourselves by taking into account 
the CDC module ( )21, rrμ    

( ) ( ) 1
1221 2cos15.0, −δΔ+=μ rr . (9) 

Thus, to determine the value of CDC module we 
need information about the difference between phase 
shifts ( ) ( )21 rr δ−δ  inherent to orthogonal components of 
amplitudes ( ) ( )11 , rErE yx  and  in the 

points with coordinates . 

( ) ( )22 , rErE yx

21, rr
To obtain this information, let us consider the 

process of formation of the laser image 
( ( )yxrEE ,0 ≡→ ) for the layer of blood plasma  
( ( ){ }rD ) that is placed between two phase filters – 
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quarter-wave plates ({ }, 1Φ { }2Φ ) and polarizers ({ }1P , 
), transmission planes of which make +45º and  

–45 º angles with directions of maximum velocity axes.  
{ }2P

This optical arrangement provides two functions 
simultaneously:   

- formation of the circular-polarized laser 
beam  that probes blood plasma; { }{ } 0110 EPE Φ=∗

     - direct measurement of values for the phase 
shift between orthogonal components of the laser 
wave amplitudes 

δ
( )yx EEE ,  in the points with 

coordinates r .   
Let us consider this phase-metric process in detail. 

The amplitude  in every point of polarization-
filtered laser image describing blood plasma can be 
represented with the following matrix equation  

( )rE

( ) { }{ } ( ){ }{ }{ } 0112225.0 EPrDPrE ΦΦ= .                 (10) 

Here 
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                    (11) 
In a particular case of linearly-polarized laser 

radiation ( ) , Eq. (10) takes a look  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1
1

0E

( )

( ) ( ) ( )[ ] ( ) ( ) ( )[ ]{
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Fig. 1. Optical scheme for measurements. 1 - He-Ne laser; 2 – collimator; 3, 5, 8 – quarter-wave plates; 4, 9 – polarizer and 
analyzer, respectively; 6 – object; 7 – micro-objective (x4); 10 – CCD camera; 11 – personal computer. 
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Solution of the matrix equation (12) is values of 
complex amplitudes  that are exclusively 
determined by the phase shift 

( )rE
( )rδ  and do not depend on 

the orientation of the optical axis  inherent to a 
biological crystal. 

( )rρ

Thus, the intensity ( )rI  of every point in the 
polarization-filtered laser image of blood plasma layer is 
defined as   

( ) ( ) ( ) ( )
⎥⎦
⎤

⎢⎣
⎡δ== ∗

δ 2sin 2
0

rIrErErI . (13) 

Here, 10 ≡I  is the intensity of a laser beam that 
probes blood plasma. It is clear that the value of phase 
shift ( )rδ  can be determined using a direct measurement 

of the intensity ( )rIδ  in the given point  of the laser 
image  

( )r

( ) ( )rIr δ=δ arcsin2 .                                               (14) 
Using the relations (10) to (14), one can obtain the 

expression for the algorithm providing determination of 
the CDC module describing the laser image of blood 
plasma in the points  and  1r 2r

( ) ( ) ( )( )( ) .arccosarccos2cos15.0,
1

2121
−

−+=μ rIrIrr
  (15) 

4. Method to measure the coordinate distribution  
of the CDC module over the points of a laser image  

Shown in Fig. 1 is the optical scheme to measure 
coordinate distribution of the CDC module for laser 
images of blood plasma [13, 32]. 

Illumination of blood plasma layers (smears) was 
performed using a parallel beam (Ø=  µm) from a 
Hе-Nе laser 1 (λ = 0.6328 µm). The transmission plane 
of the polarizer 4 and the axis of the maximum velocity 
in the quarter-wave plate 5 made the angle . 
The image of blood plasma samples 6 was projected 
using the micro-objective 7 into the plane of a light-
sensitive area (

410

045=Θ

pixpixnmr 600800 ×=×≡ ) of 
CCD camera 10. 

The transmission plane of the analyzer 9 was 
oriented at the angle °−=Θ 45  relatively to the axis of 
the maximum velocity in the quarter-wave plate 8, 
which provided formation of conditions for phase 
filtration (relations (10) to (14)) for the laser image of a 
blood plasma sample. 

The CCD camera 10 provided measurements of 
discrete two-dimensional ( )nm×  distributions for the 
intensity  ( )nmI ×δ . Then, calculated in accord with 
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s a result, we obtained the coordinate distribution 
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follows, we shall name as the correlation-phase map 

5. Algorithms for the complex statistical,  

(14) were te distributions ( )nm ×δ  scanned 
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U

( rrik Δ+ ) in the polarization-filtered laser image of 
b a, we determined the value of CDC 
module ( )rrr ikik Δ+μ , .  

 
A

( ) ( ) ⎞Δ+Δ+ −− rrrrr mm 11111111 ,...;

(CPM) for the blood plasma image. 

correlation and fractal analysis of CPM 

To objectively estimate the distributions 
( )nymx ÷=−÷=μ 1,11  for blood plasma laser images, 

atistical, correlation and fractal 
analysis of their coordinate structure. The set of 
statistical moments of the first to fourth orders μ

we used the complex st

=

, 15, 34
4,3,2,1jZ  

was calculated using the following relations [14 , 
35, 39] 

∑
=

μ μ=
N

i
iN

Z
1

1
1 , ∑

=

μ μ=
N

i
iN

Z
1

2
2

1 , 

( ) ∑
=

μ

μ μ=
N

i
iNZ

Z
1

3
3

2

3
11 , 

( ) ∑
=

μ

μ μ=
N

i
iNZ

Z
1

4
2

2

4
11 .   (16) 

Here,  is the amount of pixels in the digital 
came

orre

N
ra. 
The c lation analysis of CPM is based on the 

autocorrelation method with using the function [27, 30, 
35] 

( ) ( )[ ] ( )[ ]∫ Δ−μμ=Δ
→

μ
m

÷= mni dmmmm
m

mK
1

01
1lim .  (17) 

Here,  is the “step” for changing 
coordinates ( f CDC distribution for the 
separate  pixels in the digital camera.  

using 

( )pixm 1=Δ
mx ÷= 1 ) o

i - th line of 

The net expression for the autocorrelation function 
was obtained averaging the partial functions 
(expression (17)) over all the lines ni ÷=1  

( )
( )

n

mK

mK

n

i
i∑

=  (18) 

To quantitatively characterize the autocorrelation 
dependence

μ

μ

Δ

=Δ 1 . 

s ( )mK Δμ , we chose: 

•  “correlation area” S  

(∫ Δ= μμ
m

KS

μ

) ;
1

dmm   (19) 

• “correlation moment”  that defines the 
excess for Gramm-C

μ
4Q

harlie expansion 

( )( )

( )( )
;2

1

4Δ

=
∑
=i

imK

Q   

1

2
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
Δ∑

=

N

i
i

N

mK

(20) 

The fractal analysis of distributions
based on calculations of logarithmic dependences 

)( nm×μ  was 

( ) 1loglog −−μ dJ for power spectra 

where 

( )μJ   

( ) ∫
+∞

νπνμ=μ dJ 2cos ,            (21) 
∞−

1−= dν are the spatial frequencies that are 
etermined by geom sizes ) of stru

elements in laser images inherent to blood plasma layer. 
sing the 

d etrical ctural ( d

U least squares method, the dependences 
( ) 1loglog −−μ dJ were approximated to the curves 

( )ηV , the straight parts of which provided determination 

of the slope angles η  and fractal dimensions μF [34] 
them  

η− tg3 .                                                             (22) 
Classification of the coordinate distr tions 

)( nm

corresponding to 
F

ibu
=μ

×μ was performed in accord with the following 
criteria [13-1
• 

5]: 
fractal or self-similar, when the slope is constant 

cons( t=η ) within the limits of 2 or 3 decades for 
changing sizes ;  d

• )( nm×μ  - multi-fractal, when there are several 
sl s ope angle ( )ηV ; 

)( nm• ×μ  - rand m, who en any stable slope angles 
( )ηV  are absent over the whole interval of 

changing the dsizes . 
All the distributions were 

characterized with the dispersion  
( ) 1loglog −−μ dJ
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( )[ ]∑
=

μ =
N

D 1

6. Di M and CPM 
an blood plasma of 

patients in different physiological state 

Summarized in this Chapter are the data of comparative 
investigation aimed at the structure of blood plasma by 

 30, 35, 
 

y (group 1 - 

hom

optical
the geo trical thickness of 7 to 10 μm.  

−−μ
i

idJ
N 1

21loglog .                      (23) 

agnostic efficiency of the PC
methods for laser images of hum

using the methods of polarization-correlation [27,
38] and correlation-phase [36] mapping its laser images.

We investigated blood plasma samples (Fig. 2) 
taken from two group of patients – health
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27=q ) and those with prostate cancer (group 2 - 
25=q ). 
Our technique of sample preparation involved 

uniform applying the blood plasma smear on optically 
ogeneous glass with the following drying it at room 

temperature for 24 hours. As a result, we obtained 
ly-thin (extinction coefficient 1.0≤τ ) layers with 
me

Summarized in Fig. 3 is the series of coordinate 
distributions for the CDMP module (fragments (1), (2)) 
and CPM (fragments (3), (4)); histograms ( )VH  
(fragments (5), (6)) and ( )μH  (fragments (7), (8)); 

autocorrelation functions ( )mKV Δ  (fragm , (10)) ents (9)

and ( )mK Δμ  (fragments (11), (12)), as well as 

logarithmic dependences 1loglog −− dJ V  (fragm

(13), (14)) and lolog −J μ  (fragments (15), (16)) 

that characterize polarization-correlation ( )nmV

ents 
1g −d

×  and 
corre e ( )nm×lation-phas μ  maps of laser images 
corresponding to blood p f a healthy 
patient (fragments (1), (3), ( ), (13), (15)) 
and that with prostate ca ments (2), (4), (6), (8), 
(10), (12), (14), (16)). 

Our comparative analysis of 
experimental data ical, correlation and fractal 
structures of PCM (Fig. 3, fragments (1), (2), (5), (6), 
(9), (10), (13), (14)) for laser images of blood plasma in 
both groups (Fig. 2) shows: 

1. The histograms )(VH  (fragments (5), (6)) of 

lasma layers o
5), (7), (9), (11

ncer (frag

this set of 
on statist

distr

 blood plasma laser images. 
From oint, 

 

om 

ibutions for the CDMP value V in the 
corresponding PCM (fragments (1), (2)) are 
dependences with the clearly pronounced extreme 
( 1=V ). This fact is indicative of a high degree of 
polarization homogeneity in

 the physical viewp it can be explained by 
weakly pronounced polarization modulation of laser 
radiation, which could be provided by protein 
polycrystalline networks in blood plasma. As follows 
fr relations (1) and (2), at low values 
δ = 0.07…0.15 rad the values of elements in the Jones 

matrix tend to their limiting meanings 122,11 →d , 
021,12 →d . In other words, the coordinate distribution 

of polarization states in a blood plasma laser image is 
close to polarization of the probing beam.  

2. Autocorrelation functions ( )mKV Δ  of CDMP 
coordinate distributions ( )nmV ×  decay in a s  

manner (fragments (9), (10)), which is also 
indicative of polarization homogeneity in blood plasma 
laser images of both groups.  

mooth and
monotonic 

3. Correlation consistency coordinate 
distributions 

of 
( )nmV ×  is reflected in their fractal 

structure. As seen, approximating curves to logarithmic 
dependences 1loglog −− dJ V possess one stable slope 
angle (fragments (13), (14)) over the whole range of 
changing t

strated with stati

he geometrical sizes d . 
Quantitatively, the PCM of laser images inherent to 

blood plasma of healthy patients and those with cancer 
have been illu stical ( V

iZ 41−= ), correlation 

( VS , VQ ) and fractal ( VF , VD ) parameters (Table 1). 
The comparative analysis of the obtained data set 

(Tab

changing the statistical, correlation and fractal parameters 
at har ina CD

“ove

le 1) did not reveal any reliable criteria for 
differentiation of blood plasma laser images for both 
groups. As can be seen, the values and ranges for 

th c acterize coord te MP distributions are 
rlapped” (see fragments (5) and (6)).  

 
 

 
 

 
 
Fig. 2. Laser images ( ) of protein polycrystalline 
networks inherent to blood plasma. Explanations are given in 
the text.  

090=Θ
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(1) (2) (3) (4) 

    
(5) (6) (7) (8) 

    
(9) (10) (11) (12) 

    
(13) (14) (15) (16) 

 
Fig. 3. Coordinate, statistical, correlation and fractal structures of PCM and CPM of human blood plasma for patients in 
different physiological states. Explanations are given in the text. 
 

As to its diagnostic performance, the method of 
correlation-ph mapping  more sensitive to changes 
in the structure of polycrystalline netwo  human 
blood plasma taken from the patient with prostate 
cancer. Statistically, these differences can be observed in 
transformation of CDC distributions (Fig. 3, fragments 
(3) and (4)) of corresponding laser images.  

The histograms  are characterized with 
availability of local extremes in a wider range of 
changes in th rrelation-phase parame ragments 
(7 (8)). This fact indicates growth in phase modulation, 
w
Th

values of phase shifts δ = 07…0.15 rad, the CDC value 
undergoes significant changes with the range ase is

rk in

( )μH

is co ter (f
), 
hich is typical for blood plasma images in the group 2. 
e analysis of Exp. (15) shows that, even for low 

0.
in 

. Autocorrelation functions ( )mK Δμ98.065.0 ≤μ≤  of 
coordinate distributions ( )nm×μ  

tive of 
g blood

st pronounced is the

sharply drop (fragment 
(12)), which is also indica phase inhomogeneity in 
laser images describin  plasma of patients with 
cancer.  

The mo  change in coordinate 
structure of ( )nm×μ  distributions, which is caused by 
pathological changes and is reflected in its 
transformation from a fractal type (fragment (15)) to the 
random one (fragment (16)). 
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Table 1. Statistical ( V  correlation ( V V ) and fractal ( V

iZ 41−= ), S , Q F , V ) parameters of polarization-correlation 

Parameters 

D
maps for laser images of blood plasma 

VZ1  VZ 2
V
3  VZ 4  VS  VQ  VF  VD   Z

Group 1 
(27 samples) 

7 
±  

0.02 

0.05 
±  

0.007 

0.08 0.9
±  

0.009 

0,73 
±  

0.26 
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0.87 
±  

0.21 

0.011 
±  

2.42 
±  

0.18 
±  

0.032 0.011 0.021 

Group 2 
(25 samples) 

0.96 
±  

0.01 

0.06 
±  

0.008 

0.1 
±  

0.017 

0.67 
±  

0.075 

0.24 
±  

0.013 

0.27 
±  

0.036 

2.49 
±  

0.012 

0.23 
±  

0.027 

 
Table 2. Statistical ( −= 41iZ ), correlation ( S Q  and fractal ( Vμ V , )V F , VD arameters of correlation-phase maps for 
blood plasma laser images 

) p

Parameters μ
1Z  μ

2Z  μ
3Z  μ

4Z  μS  μQ  μF  μD  

Group 1 
(27 samples) 

0.91 
±  

0.009 

0.07 
±  

0.009 

0.09 
±  

0.011 

0.27 
±  

0.031 

0.24 
±  

0.01 

0.23 
±  

0.032 

1.952 
±  

0.014 

0.21 
±  

0.026 

Group 2 
(25 samples) 

0.79 
±  

0.08 

0.15 
±  

0.018 

0.325 
±  

0.017 

1.39 
±  

0,017 

0.17 
±  

0.012 

0.86 
±  

0.091 
- 

0.28 
±  

0.036 
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mentioned b ess cau
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grow h  

ation. 
e

( )nm×δ
Statistical g the 
range of chan
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( )nm×μ . 

Quantitatively, CPM of laser images corresponding to 
blood plasma of patients both healthy and with cancer 
are illustrated using the statistical ( μ

−= 41iZ ), correlation 

( VS , VQ ) and fractal ( VF , VD ) parameters (Table 2). 

7. Conclusions 

The obtained results of studying the statistical, 
correlation and fractal structures of correlation-phase 
maps corresponding to blood plasma laser images for 
both groups enabled us to formulate the following 
objective criteria for their differentiation: 

1. The values of statistical moments of d 
and fourth orders, which characterize 

the thir
( )nm×μ  

distributions of laser images for the group 2 samples, are 
3.45 and 4.17 times higher than e analogous 
parame s μ

3Z , μ
4Z  of b d p ma in the group 1. 

 th
ter loo las

2. The values of correlation area  and 
ents  differ 1.4 and 3.6 times, 

respectively, for both groups of blood plasma. 

3. The fractal  ( )nm×μ  distribution of laser 
images for samples of blood plasma in the group 1 is 
transformed into the random one for t mples from 
the p 2..  

Thus, we have de rm t of obj ctive 
criteria, using ch o f ate ate 
distrib s he m  com lex deg of 
co y fo r im human blood ma. 
Also, we have demonstrated he diagnostic sensitivity of 
th red  to logic states observed in 
patients with cancer.   
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