Semiconductor Physics, Quantum Electronics & Optoelectronics. 2011. V. 14, N 4. P. 416-420.
https://doi.org/10.15407/spqeo14.04.416



References 

1. Infrared Photon Detectors, Ed. A. Rogalski. SPIE Optical Engineering Press, N.Y., 1995.
 
2. N.V. Zotova, S.A. Karandashev, B.A. Matveev et al., Optoelectronic sensors based on narrow band A3B5 alloys. Proc. SPIE, 1587, p. 334-345 (1991).
https://doi.org/10.1117/12.56559
 
3. M.K. Parry and A. Krier, Room-temperature Cddiffused InAsSbP diodes for methane gas detection. Semicond. Sci. Technol. 8, p. 1764-1769 (1993).
https://doi.org/10.1088/0268-1242/8/9/017
 
4. F.A. Popov, M.V. Stepanov, V.V. Sherstnev and Yu.P. Yakovlev, 3.3 µm LEDs for measurements of methane. Tech. Phys. Lett. 23, p. 24-31 (1997).
https://doi.org/10.1134/1.1261898
 
5. B.A. Matveev, G.A. Gavrilov, V.V. Evstropov et al., Mid-infrared (− μm53) LEDs as sources for gas and liquid sensors. Sens. Actuators B, 38-39, p. 339-343 (1997).
https://doi.org/10.1016/S0925-4005(97)80230-4
 
6. A. Krier and V.V. Sherstnev, Powerful interface light emitting diodes for methane gas detection. J. Phys. D: Appl. Phys., 33, p. 101-106 (2000).
https://doi.org/10.1088/0022-3727/33/2/301
 
7. B.A. Matveev, N.V. Zotova, N.D. Il'inskaya et al., Towards efficient mid-IR LED operation: optical pumping, extraction or injection of carriers?. J. Mod. Opt., 49 (5/6), p. 743-756 (2002).
https://doi.org/10.1080/09500340110108576
 
8. A. Sukach, V. Tetyorkin, G. Olijnuk, V. Lukyanenko, A. Voroschenko, Cooled InAs photodiodes for IR applications. Proc. SPIE, 5957, p. 267-276 (2005).
https://doi.org/10.1117/12.622195
 
9. Y. Nemirovsky and A. Unikovsky, Tunnelling and 1/f noise currents in HgCdTe photodiodes. J. Vac. Sci. Technol. B, 10 (4), p. 1602-1610 (1992).
https://doi.org/10.1116/1.586256
 
10. D. Rosenfeld and G. Bahir, A model for the trapassisted tunnelling mechanism in diffused n−p and implanted n+ − p HgCdTe photodiodes. IEEE Trans. Electron. Devices, 39 (7), p. 1638-1645 (1992).
https://doi.org/10.1109/16.141229
 
11. Wenmu He, Zeynep Celik-Batler, 1/f noise and dark current components in HgCdTe MIS infrared detectors. Solid-State Electron. 19(1), p. 127-132 (1996).
https://doi.org/10.1016/0038-1101(95)00089-C
 
12. Herbert F. Matare, Defect Electronics in Semiconductors. Wiley, N.Y., 1971.
 
13. D.B. Holt and B.G. Yacobi, Extended Defects in Semiconductors. Electronic Properties, Device Effects and Structures. Cambridge University Press, N.Y., 2007.
https://doi.org/10.1017/CBO9780511534850
 
14. V.B. Shikin, Yu.V. Shikina, Charged dislocations in semiconductors. Physics-Uspekhi (Advances in Physical Sciences), 38 (8), p. 845-875 (1995).
https://doi.org/10.1070/PU1995v038n08ABEH000099
 
15. M. Whelan, Leakage currents of n/p silicon diodes with different amounts of dislocations. Solid-State Electronics, 12(6), p. 963-968 (1969).
https://doi.org/10.1016/0038-1101(69)90017-3
 
16. V.V. Evstropov, Yu.V. Zhilyaev, M. Dzhumaeva and N. Nazarov, Tunnel excess current in nondegenerated (p – n and m – s) silicon-containing III – V compound semiconductor structures. Fizika Tekhnika Poluprovodn. 31 (2), p. 152-158 (1997), in Russian.
 
17. V.V. Evstropov, M. Dzhumaeva, Yu.V. Zhilyaev, N. Nazarov, A.A. Sitnikova, and L.M. Fedorov, Dislocation origin and a model of the excessive tunnel current in GaP p – n structures. Fizika Tekhnika Poluprovodn. 34(11), p. 1357-1362 (2000), in Russian.
 
18. O.A. Ageev, A.E. Belyaev, N.S. Boltovets, V.N. Ivanov, R.V. Konakova, Ya.Ya. Kudryk, P.M. Lytvyn, V.V. Milenin, A.V. Sachenko, n SiC-H6-TiBAu − x − Schottky barrier diodes: the features of current flow in rectifying and nonrectifying contacts. Fizika Tekhnika Poluprovodn. 43(7), p. 897-903 (2009), in Russian.
 
19. O. Madelung, Semiconductors-Basic Data, 2nd Revised Edition. Springer, Berlin, 1996.
https://doi.org/10.1007/978-3-642-97675-9
 
20. V.V. Kveder, R. Labusch, and Yu.A. Ossipyan, Frequency dependence of the dislocation conduction in Ge and Si. Phys. status solidi, 92, p. 293-302 (1985).
https://doi.org/10.1002/pssa.2210920130
 
21. R. Nitccki and B. Pohoryles, Tunneling from dislocation cores in silicon Schottky diodes. Appl. Phys. A, 36, p. 55-61 (1985).
https://doi.org/10.1007/BF00616462
 
22. R. Labusch and W. Schröter, Electrical Properties of Dislocations in Semiconductors, in: Dislocations in Solids, Ed. F.R.N. Nabarro, 5. Amsterdam, North-Holland, 1978.
 
23. V. Kveder, M. Kittler, W. Schröter, Recombination activity of contaminated dislocations in silicon: A model describing electron-beam-induced current contrast behavior. Phys. Rev. B, 63, 115208-1–115208-11 (2001).
https://doi.org/10.1103/PhysRevB.63.115208
 
24. M. Seibt, R. Halil, V. Kveder and W. Schröter, Electronic states at dislocations and metal silicide precipitates in crystalline silicon and their role in solar cell materials. Appl. Phys. A, 96, p. 235-253 (2009).
https://doi.org/10.1007/s00339-008-5027-8
 
25. S.M. Sze, Physics of Semiconductor Devices, Second Edition. Wiley, N.Y., 1981.
 
26. R. Labusch, One dimensional transport along dislocations. Physica, 117B-118B, p. 23-28 (1982).
 
27. A.V. Granato and K. Luecke in: Physical Acoustic, ed. W.P. Mason. Academic Press, N.Y., 1966.