2.
N.V. Zotova, S.A. Karandashev, B.A. Matveev et al., Optoelectronic
sensors based on narrow band A3B5 alloys. Proc. SPIE, 1587, p. 334-345
(1991). https://doi.org/10.1117/12.56559
3.
M.K. Parry and A. Krier, Room-temperature Cddiffused InAsSbP diodes for
methane gas detection. Semicond. Sci. Technol. 8, p. 1764-1769 (1993). https://doi.org/10.1088/0268-1242/8/9/017
4.
F.A. Popov, M.V. Stepanov, V.V. Sherstnev and Yu.P. Yakovlev, 3.3 µm
LEDs for measurements of methane. Tech. Phys. Lett. 23, p. 24-31 (1997). https://doi.org/10.1134/1.1261898
5.
B.A. Matveev, G.A. Gavrilov, V.V. Evstropov et al., Mid-infrared (−
μm53) LEDs as sources for gas and liquid sensors. Sens. Actuators B,
38-39, p. 339-343 (1997). https://doi.org/10.1016/S0925-4005(97)80230-4
6.
A. Krier and V.V. Sherstnev, Powerful interface light emitting diodes
for methane gas detection. J. Phys. D: Appl. Phys., 33, p. 101-106
(2000). https://doi.org/10.1088/0022-3727/33/2/301
7.
B.A. Matveev, N.V. Zotova, N.D. Il'inskaya et al., Towards efficient
mid-IR LED operation: optical pumping, extraction or injection of
carriers?. J. Mod. Opt., 49 (5/6), p. 743-756 (2002). https://doi.org/10.1080/09500340110108576
8.
A. Sukach, V. Tetyorkin, G. Olijnuk, V. Lukyanenko, A. Voroschenko,
Cooled InAs photodiodes for IR applications. Proc. SPIE, 5957, p.
267-276 (2005). https://doi.org/10.1117/12.622195
9.
Y. Nemirovsky and A. Unikovsky, Tunnelling and 1/f noise currents in
HgCdTe photodiodes. J. Vac. Sci. Technol. B, 10 (4), p. 1602-1610
(1992). https://doi.org/10.1116/1.586256
10.
D. Rosenfeld and G. Bahir, A model for the trapassisted tunnelling
mechanism in diffused n−p and implanted n+ − p HgCdTe photodiodes. IEEE
Trans. Electron. Devices, 39 (7), p. 1638-1645 (1992). https://doi.org/10.1109/16.141229
11.
Wenmu He, Zeynep Celik-Batler, 1/f noise and dark current components in
HgCdTe MIS infrared detectors. Solid-State Electron. 19(1), p. 127-132
(1996). https://doi.org/10.1016/0038-1101(95)00089-C
12. Herbert F. Matare, Defect Electronics in Semiconductors. Wiley, N.Y., 1971.
13.
D.B. Holt and B.G. Yacobi, Extended Defects in Semiconductors.
Electronic Properties, Device Effects and Structures. Cambridge
University Press, N.Y., 2007. https://doi.org/10.1017/CBO9780511534850
14.
V.B. Shikin, Yu.V. Shikina, Charged dislocations in semiconductors.
Physics-Uspekhi (Advances in Physical Sciences), 38 (8), p. 845-875
(1995). https://doi.org/10.1070/PU1995v038n08ABEH000099
15.
M. Whelan, Leakage currents of n/p silicon diodes with different
amounts of dislocations. Solid-State Electronics, 12(6), p. 963-968
(1969). https://doi.org/10.1016/0038-1101(69)90017-3
16.
V.V. Evstropov, Yu.V. Zhilyaev, M. Dzhumaeva and N. Nazarov, Tunnel
excess current in nondegenerated (p – n and m – s) silicon-containing
III – V compound semiconductor structures. Fizika Tekhnika Poluprovodn.
31 (2), p. 152-158 (1997), in Russian.
17. V.V. Evstropov,
M. Dzhumaeva, Yu.V. Zhilyaev, N. Nazarov, A.A. Sitnikova, and L.M.
Fedorov, Dislocation origin and a model of the excessive tunnel current
in GaP p – n structures. Fizika Tekhnika Poluprovodn. 34(11), p.
1357-1362 (2000), in Russian.
18. O.A. Ageev, A.E.
Belyaev, N.S. Boltovets, V.N. Ivanov, R.V. Konakova, Ya.Ya. Kudryk,
P.M. Lytvyn, V.V. Milenin, A.V. Sachenko, n SiC-H6-TiBAu − x − Schottky
barrier diodes: the features of current flow in rectifying and
nonrectifying contacts. Fizika Tekhnika Poluprovodn. 43(7), p. 897-903
(2009), in Russian.
20.
V.V. Kveder, R. Labusch, and Yu.A. Ossipyan, Frequency dependence of
the dislocation conduction in Ge and Si. Phys. status solidi, 92, p.
293-302 (1985). https://doi.org/10.1002/pssa.2210920130
21.
R. Nitccki and B. Pohoryles, Tunneling from dislocation cores in
silicon Schottky diodes. Appl. Phys. A, 36, p. 55-61 (1985). https://doi.org/10.1007/BF00616462
22.
R. Labusch and W. Schröter, Electrical Properties of Dislocations in
Semiconductors, in: Dislocations in Solids, Ed. F.R.N. Nabarro, 5.
Amsterdam, North-Holland, 1978.
23. V. Kveder, M. Kittler,
W. Schröter, Recombination activity of contaminated dislocations in
silicon: A model describing electron-beam-induced current contrast
behavior. Phys. Rev. B, 63, 115208-1–115208-11 (2001). https://doi.org/10.1103/PhysRevB.63.115208
24.
M. Seibt, R. Halil, V. Kveder and W. Schröter, Electronic states at
dislocations and metal silicide precipitates in crystalline silicon and
their role in solar cell materials. Appl. Phys. A, 96, p. 235-253
(2009). https://doi.org/10.1007/s00339-008-5027-8
25. S.M. Sze, Physics of Semiconductor Devices, Second Edition. Wiley, N.Y., 1981.
26. R. Labusch, One dimensional transport along dislocations. Physica, 117B-118B, p. 23-28 (1982).
27. A.V. Granato and K. Luecke in: Physical Acoustic, ed. W.P. Mason. Academic Press, N.Y., 1966.