1. Th. Kaiser, K.W. Benz, Floating-zone growth of
silicon in magnetic fields. III. Numerical simulation. J. Cryst.
Growth, 183(4), p. 564-572 (1998). https://doi.org/10.1016/S0022-0248(97)00487-9
2.
M.V. Badylevich, U.L. Iunin, V.V. Kveder, V.I. Orlov, Yu.A. Ossipyan,
Influence of magnetic field on unlocking stress and mobility of
individual dislocations in silicon. Zhurnal eksperiment. teor. fiziki,
124, No.3(9), p. 664-669 (2003), in Russian.
3. M.V.
Badylevich, V.V. Kveder, V.I. Orlov, Yu.A. Ossipyan, Spin-resonant
change of unlocking stress for dislocations in silicon. Phys. status
solidi (c), 2, p. 1869-1872 (2005). https://doi.org/10.1002/pssc.200460534
4.
N.N. Novikov, B.D. Patsay, V.M. Tsmots, P.G. Litovchenko, Yu.V.
Pavlovskii, M.M. Luchkevych, Influence of high temperature treatment on
structural and magnetic changes in silicon crystals. Zhurnal
fiz.doslidzhen' 9(4), p. 319-324 (2005), in Ukrainian.
5.
V.A. Makara, L.P. Steblenko, Yu.L. Kolchenko, S.M. Naumenko, I.P.
Lisovsky, D.O. Mazunov, Yu.Yu. Mokliak, Effect of weak magnetic field
on structural arrangement of extrinsic oxygen atoms and mechanical
properties of silicon monocrystals. Semiconductor Physics, Quantum
Electronics & Optoelectronics, 9(2), p. 1-3 (2006).
6.
D.R. McCameyl, G.W. Morley, H.A. Seipel, L.C. Brunel, J. van Tol, C.
Boehme, Spin-dependent processes at the crystalline Si-SiO2 interface
at high magnetic fields. Phys. Rev. B, 78(4), 045303 (2008). https://doi.org/10.1103/PhysRevB.78.045303
7.
K. Jurkschat, S. Senkader, P.R. Wilshaw, D. Gambaro, R.J. Falster,
Onset of slip in silicon containing oxide precipitates. J. Appl. Phys.
90(7), p. 3219-3225 (2001). https://doi.org/10.1063/1.1398596
8. A. Borghesi, B. Pivac, A. Sassella, A. Stella, Oxygen precipitation in silicon. J. Appl. Phys. 77(9), p. 4169-4244 (1995). https://doi.org/10.1063/1.359479
9.
T. Sinno, E. Dornberger, W. von Ammon, R.A. Brown, F. Dupret, Defect
engineering of Czochralski single-crystal silicon. Mater. Sci. Eng. 28,
p. 149-198 (2000). https://doi.org/10.1016/S0927-796X(00)00015-2
10. R.B. Morgunov, Spin micromechanics in physics of plasticity. Physics-Uspekhi 174(2), p. 131-153 (2004).
11. O.I. Golovin, Magnetoplasticity of solids. Fizika Tverd. Tela, 46(5), p. 769-803 (2004), in Russian.
12.
A.L. Ivanovskii, Magnetic effects in non-magnetic sp-materials induced
by sp-impurities and defects. Physics-Uspekhi, 177(10), p. 1083-1105
(2007).
14.
R.W. Keyes, Effects of the magnetic field in quantum computing with
silicon. J. Phys.: Condens. Matter. 17(23), p. V9-V11 (2005). https://doi.org/10.1088/0953-8984/17/43/N01
15.
M.J. Calderón, B. Koiller, S. Das Sarma, Magneticfield-assisted
manipulation and entanglement of Si spin qubits. Phys. Rev. B, 74(8),
081302(R) (2006).
17.
A.L. Buchachenko, Influence of magnetic field on mechanics of
non-magnetic crystals: origin of the magnetoplastic effect. Zhurnal
eksperiment. teor. fiziki, 129(5), p. 909-913 (2006), in Russian.
18.
A.L. Buchachenko, Magnetoplasticity of diamagnetic crystals in
microwave fields. Zhurnal eksperiment. teor. fiziki, 132, No.3(9), p.
673-679 (2007), in Russian.
19. A.L. Buchachenko, Physical
kinetics of magnetoplasticity in diamagnetic crystals. Zhurnal
eksperiment. teor. fiziki, 132, No.4(10), p. 827-830 (2007), in Russian.
20.
R.B. Morgunov, A.L. Buchachenko, Magnetoplasticity and magnetic memory
in diamagnetic solids. Zhurnal eksperiment. teor. fiziki, 136(3), p.
505-515 (2009), in Russian.
21. V.I. Belyavsky, Yu.V.
Ivankov, M.N. Levin, Magnon mechanism of reactions between defects in
solids. Fizika Tverd. Tela, 48(7), p. 1255-1259 (2006), in Russian.
23.
V.B. Molodkin, S.I. Olikhovskii, E.N. Kislovskii, T.P. Vladimirova,
E.S. Skakunova, R.F. Seredenko, B.V. Sheludchenko, Dynamical
theoretical model of the high-resolution double-crystal x-ray
diffractometry of imperfect single crystals with microdefects. Phys.
Rev. B, 78(22), 224109 (2008). https://doi.org/10.1103/PhysRevB.78.224109
24.
M.M. Belova, M.N. Moskal'kov, A.Ye. Rudich, S.Y. Olikhovsky, E.V.
Kochelab, Modeling the evolution of microdefect system in crystalline
supersaturated solid solution. I. Evolution equations and conservation
laws. Metallofizika Noveishie Technologii, 29(4), p. 427-450 (2007), in
Russian.
25. S.I. Olikhovskii, M.M. Belova, M.N.
Moskal'kov, Yu.A. Belov, A.Ye. Rudich, E.V. Kochelab, Modeling the
evolution of microdefect system in crystalline supersaturated solid
solution. II. Dimensional analysis of evolution equations an diffusion.
Metallofizika Noveishie Technologii, 29(5), p. 649-662 (2007), in
Russian.
26. M.M. Belova, M.N. Moskal'kov, Yu.A. Belov,
A.Ye. Rudich, S.I. Olikhovsky, E.V. Kochelab, Modeling the evolution of
microdefect system in crystalline supersaturated solid solution. III.
Numeric calculations. Metallofizika Noveishie Technologii, 29(6), p.
727-742 (2007), in Russian.
27. Ye.M. Kyslovskyy, T.P.
Vladimirova, S.I. Olikhovskii, V.B. Molodkin, E.V. Kochelab, R.F.
Seredenko, Evolution of the microdefect structure in silicon at
isothermal annealing as determined by X-ray diffractometry. Phys.
status solidi (a), 204(8), p. 2591-2597 (2007). https://doi.org/10.1002/pssa.200675680