Semiconductor Physics, Quantum Electronics & Optoelectronics. 2011. V. 14, N 4. P. 470-477.
https://doi.org/10.15407/spqeo14.04.470



References 

1. Th. Kaiser, K.W. Benz, Floating-zone growth of silicon in magnetic fields. III. Numerical simulation. J. Cryst. Growth, 183(4), p. 564-572 (1998).
https://doi.org/10.1016/S0022-0248(97)00487-9
 
2. M.V. Badylevich, U.L. Iunin, V.V. Kveder, V.I. Orlov, Yu.A. Ossipyan, Influence of magnetic field on unlocking stress and mobility of individual dislocations in silicon. Zhurnal eksperiment. teor. fiziki, 124, No.3(9), p. 664-669 (2003), in Russian.
 
3. M.V. Badylevich, V.V. Kveder, V.I. Orlov, Yu.A. Ossipyan, Spin-resonant change of unlocking stress for dislocations in silicon. Phys. status solidi (c), 2, p. 1869-1872 (2005).
https://doi.org/10.1002/pssc.200460534
 
4. N.N. Novikov, B.D. Patsay, V.M. Tsmots, P.G. Litovchenko, Yu.V. Pavlovskii, M.M. Luchkevych, Influence of high temperature treatment on structural and magnetic changes in silicon crystals. Zhurnal fiz.doslidzhen' 9(4), p. 319-324 (2005), in Ukrainian.
 
5. V.A. Makara, L.P. Steblenko, Yu.L. Kolchenko, S.M. Naumenko, I.P. Lisovsky, D.O. Mazunov, Yu.Yu. Mokliak, Effect of weak magnetic field on structural arrangement of extrinsic oxygen atoms and mechanical properties of silicon monocrystals. Semiconductor Physics, Quantum Electronics & Optoelectronics, 9(2), p. 1-3 (2006).
 
6. D.R. McCameyl, G.W. Morley, H.A. Seipel, L.C. Brunel, J. van Tol, C. Boehme, Spin-dependent processes at the crystalline Si-SiO2 interface at high magnetic fields. Phys. Rev. B, 78(4), 045303 (2008).
https://doi.org/10.1103/PhysRevB.78.045303
 
7. K. Jurkschat, S. Senkader, P.R. Wilshaw, D. Gambaro, R.J. Falster, Onset of slip in silicon containing oxide precipitates. J. Appl. Phys. 90(7), p. 3219-3225 (2001).
https://doi.org/10.1063/1.1398596
 
8. A. Borghesi, B. Pivac, A. Sassella, A. Stella, Oxygen precipitation in silicon. J. Appl. Phys. 77(9), p. 4169-4244 (1995).
https://doi.org/10.1063/1.359479
 
9. T. Sinno, E. Dornberger, W. von Ammon, R.A. Brown, F. Dupret, Defect engineering of Czochralski single-crystal silicon. Mater. Sci. Eng. 28, p. 149-198 (2000).
https://doi.org/10.1016/S0927-796X(00)00015-2
 
10. R.B. Morgunov, Spin micromechanics in physics of plasticity. Physics-Uspekhi 174(2), p. 131-153 (2004).
 
11. O.I. Golovin, Magnetoplasticity of solids. Fizika Tverd. Tela, 46(5), p. 769-803 (2004), in Russian.
 
12. A.L. Ivanovskii, Magnetic effects in non-magnetic sp-materials induced by sp-impurities and defects. Physics-Uspekhi, 177(10), p. 1083-1105 (2007).
 
13. M.E. Flatté, Solid-state physics: Silicon spintronics warms up. Nature, 462, p. 419-420 (2009).
https://doi.org/10.1038/462419a
 
14. R.W. Keyes, Effects of the magnetic field in quantum computing with silicon. J. Phys.: Condens. Matter. 17(23), p. V9-V11 (2005).
https://doi.org/10.1088/0953-8984/17/43/N01
 
15. M.J. Calderón, B. Koiller, S. Das Sarma, Magneticfield-assisted manipulation and entanglement of Si spin qubits. Phys. Rev. B, 74(8), 081302(R) (2006).
 
16. V.I. Belyavsky, M.N. Levin, Spin effects in defect reactions. Phys. Rev. B, 70(10), 104101 (2004).
https://doi.org/10.1103/PhysRevB.70.104101
 
17. A.L. Buchachenko, Influence of magnetic field on mechanics of non-magnetic crystals: origin of the magnetoplastic effect. Zhurnal eksperiment. teor. fiziki, 129(5), p. 909-913 (2006), in Russian.
 
18. A.L. Buchachenko, Magnetoplasticity of diamagnetic crystals in microwave fields. Zhurnal eksperiment. teor. fiziki, 132, No.3(9), p. 673-679 (2007), in Russian.
 
19. A.L. Buchachenko, Physical kinetics of magnetoplasticity in diamagnetic crystals. Zhurnal eksperiment. teor. fiziki, 132, No.4(10), p. 827-830 (2007), in Russian.
 
20. R.B. Morgunov, A.L. Buchachenko, Magnetoplasticity and magnetic memory in diamagnetic solids. Zhurnal eksperiment. teor. fiziki, 136(3), p. 505-515 (2009), in Russian.
 
21. V.I. Belyavsky, Yu.V. Ivankov, M.N. Levin, Magnon mechanism of reactions between defects in solids. Fizika Tverd. Tela, 48(7), p. 1255-1259 (2006), in Russian.
 
22. V.I. Belyavsky, M.N. Levin, N.J. Olson, Defectinduced lattice magnetism: Phenomenology of magnetic-field-stimulated defect reactions in nonmagnetic solids. Phys. Rev. B, 73(5), 054429 (2006).
https://doi.org/10.1103/PhysRevB.73.054429
 
23. V.B. Molodkin, S.I. Olikhovskii, E.N. Kislovskii, T.P. Vladimirova, E.S. Skakunova, R.F. Seredenko, B.V. Sheludchenko, Dynamical theoretical model of the high-resolution double-crystal x-ray diffractometry of imperfect single crystals with microdefects. Phys. Rev. B, 78(22), 224109 (2008).
https://doi.org/10.1103/PhysRevB.78.224109
 
24. M.M. Belova, M.N. Moskal'kov, A.Ye. Rudich, S.Y. Olikhovsky, E.V. Kochelab, Modeling the evolution of microdefect system in crystalline supersaturated solid solution. I. Evolution equations and conservation laws. Metallofizika Noveishie Technologii, 29(4), p. 427-450 (2007), in Russian.
 
25. S.I. Olikhovskii, M.M. Belova, M.N. Moskal'kov, Yu.A. Belov, A.Ye. Rudich, E.V. Kochelab, Modeling the evolution of microdefect system in crystalline supersaturated solid solution. II. Dimensional analysis of evolution equations an diffusion. Metallofizika Noveishie Technologii, 29(5), p. 649-662 (2007), in Russian.
 
26. M.M. Belova, M.N. Moskal'kov, Yu.A. Belov, A.Ye. Rudich, S.I. Olikhovsky, E.V. Kochelab, Modeling the evolution of microdefect system in crystalline supersaturated solid solution. III. Numeric calculations. Metallofizika Noveishie Technologii, 29(6), p. 727-742 (2007), in Russian.
 
27. Ye.M. Kyslovskyy, T.P. Vladimirova, S.I. Olikhovskii, V.B. Molodkin, E.V. Kochelab, R.F. Seredenko, Evolution of the microdefect structure in silicon at isothermal annealing as determined by X-ray diffractometry. Phys. status solidi (a), 204(8), p. 2591-2597 (2007).
https://doi.org/10.1002/pssa.200675680