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1. Introduction

The investigation of heat conductivity in the elements of 
microelectronic devices contributes to better 
understanding of a number of microprocesses that take 
place in them and are related to the movement and 
dissipation of elementary particles. None of the transfer 
phenomena provides such rich and deep information 
about lattice vibrations, about the excited states of 
electrons, about the interaction of electrons with lattice 
in semiconductors, as thermal conductivity does. In 
microelectronic device elements, where electric current 
flows, nonhomogeneous heat release always takes place, 
and in some cases large temperature gradients arise. 
Therefore, the performance of microelectronic devices 
strongly depends on the temperature regimes imposed 
during heating process. This is especially significant in 
devices, where the thin-film layers and the foreign 
inclusion are applied. 

Some researches of the temperature regimes for 
separate elements of microelectronic devices have been 
conducted earlier [1-4]. 

Hereinafter the boundary steady-state thermal 
conductivity problem has been formulated, the analytical 
solution and the numerical analysis for the element of 
microelectronic device, which is described by an 
isotropic layer with thin parallelepipedic inclusion that 
releases heat and by heat dissipation. The general 
thermal conductivity equation for piecewise 
homogeneous structures has been presented [5, 6].

2. Problem statement

Consider the isotropic layer containing parallelepipedic 

inclusion with the volume hbdV 80  , in which the area 

},,:),,{(Ω0 dzbyhxzyx  of uniformly

distributed internal heat sources with the power 0q  acts.

The body under consideration is referred to rectangular
Cartesian coordinate system ( )Oxyz with its origin in 

the center of inclusion. At the inclusion boundary 
surface that releases heat, the conditions of ideal thermal
contact are fulfilled, and on the layer boundary

surfaces {( , , ) : , }v vK x y d l x y      , 

{( , , ) : , }n nK x y d l x y        the conditions of 

convective heat exchange with the environment with

constant temperature ct  (Fig. 1) are given.

3. Mathematical model of the problem

Assume that the foreign inclusion is thin. To determine 
the stationary temperature field ( , , )t x y z in the

considered system, we use the heat conductivity 
equation [3, 4]

),,,(]θ),,(λ[ zyxQgradzyxdiv  (1)

where 

 ),(δ),(Λλ),,(λ 01 yxdzNzyx   (2)
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is the thermal conductivity coefficient of the 

nonhomogeneous layer;  00 λ4hb reduced

thermal conductivity coefficient of the inclusion;

0 1λ ,λ  thermal conductivities of the inclusion and the 

layer materials, respectively; 

θ ct t  ; )()(),( dzSdzSdzN  ; ),(δ yx

Dirac delta function; ),(δ),(),,( 0 yxdzNQzyxQ  ; 

0 04Q hb q    reduced capacity of internal heat 

sources;


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.0ζ,0

,0ζ,5.05.0

,0ζ,1

)ζ( S asymmetric unit

function [7].
The boundary conditions will have the appearance 
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Here nv α,α - heat dissipation coefficients of the

edges nv KK , of the layer, respectively.

Let us introduce the function

θ),,(λ  zyxT (4)

and differentiate it with respect to variables , ,x y z

taking into account description of the thermal 
conductivity coefficient λ( , , )x y z  (2). As a result, we 

obtain:
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(5)

By substituting the expressions (5) to the relation 
(1), we come to the differential equation with partial 
derivatives with discontinuous and singular coefficients:

 
  

,),,(
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                                     (6)

Fig. 1. Isotropic layer with a thin parallelepipedic inclusion.
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Cartesian rectangular coordinate system.
We approximate the function θ(0, 0, )z  as (Fig. 2)
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Here,   )1,1(θ  ;,; 121   njzzzddz jnj 

are unknown approximating temperature values.
By substituting the expression (7) in equation (6), 

we obtain:
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where ( , , ) ( ) ( ).j jN z z d S z z S z d    

Fig. 2. Approximation of the function (0,0,z).
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4. Construction of analytical solution
to the boundary problem

Applying the Fourier integral transform by the 
coordinates x and y to the equation (8) and to the 

boundary conditions (3) and taking into account the 
relation (4), we obtain the ordinary differential equation
with constant coefficients
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Here,  




 TdxdyeT yxi )(

π2

1
 is the function 

( , , )T x y z transformant; ξ,η  parameters of the integral

Fourier transform; 1i    imaginary unit; 2 2 2γ =ξ +η .

The general solution of the equation (9) is:
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where 21, CC are intergrating constants;

);()(chγ

)()(chγ),(),γ(

dzSdz

dzSdzdzNz









).()(chγ

)()(chγ),,(),,γ(

dzSdz

zzSzzdzzNzz jjjj









Having applied the boundary conditions (10), a 
partial solution of the problem (9), (10) is obtained
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Changing the relation (12) to the original, we 
obtain the expression for the required temperature
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The unknown approximating temperature values 

θ ( 1, 2, ..., )i i n and values θ(0, 0, )d can be found

by solving the system of 2n  linear algebraic
equations derived from the expression (13).

Thus, the desired temperature field in 
nonhomogeneous layer is described by the formula (13) 
from which we receive the temperature value at an 
arbitrary point of layer and of foreign inclusion.

5. Conclusions

Using generalized functions and piecewise linear 
approximation of excess temperature θ(0, 0, )z  by 

height of foreign inclusion ] ; [z d d  , with the 

expression (7), the thermal conductivity equation (8) 
with a singular right-hand side has been built. Using the 
Fourier integral transform, the analytical solution (13) of 
the boundary thermal conductivity problem (1), (3) has 
been found, which allows in an arbitrary point to 
calculate the temperature value based on developed new 
algorithms and software tools and to predict operation
modes of individual elements and blocks of 
microelectronic devices and to identify the unknown 
parameters as well as increase the heat resistance, which 
increases their lifetime.
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1. Introduction 

The investigation of heat conductivity in the elements of microelectronic devices contributes to better understanding of a number of microprocesses that take place in them and are related to the movement and dissipation of elementary particles. None of the transfer phenomena provides such rich and deep information about lattice vibrations, about the excited states of electrons, about the interaction of electrons with lattice in semiconductors, as thermal conductivity does. In microelectronic device elements, where electric current flows, nonhomogeneous heat release always takes place, and in some cases large temperature gradients arise. Therefore, the performance of microelectronic devices strongly depends on the temperature regimes imposed during heating process. This is especially significant in devices, where the thin-film layers and the foreign inclusion are applied. 


Some researches of the temperature regimes for separate elements of microelectronic devices have been conducted earlier [1-4]. 


Hereinafter the boundary steady-state thermal conductivity problem has been formulated, the analytical solution and the numerical analysis for the element of microelectronic device, which is described by an isotropic layer with thin parallelepipedic inclusion that releases heat and by heat dissipation. The general thermal conductivity equation for piecewise homogeneous structures has been presented [5, 6].

2. Problem statement


Consider the isotropic layer containing parallelepipedic inclusion with the volume
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 the conditions of convective heat exchange with the environment with constant temperature 
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 (Fig. 1) are given.

3. Mathematical model of the problem


Assume that the foreign inclusion is thin. To determine the stationary temperature field 
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 in the considered system, we use the heat conductivity equation [3, 4]
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The boundary conditions will have the appearance 
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Let us introduce the function 
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and differentiate it with respect to variables 
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(5)

By substituting the expressions (5) to the relation (1), we come to the differential equation with partial derivatives with discontinuous and singular coefficients: 
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Fig. 1. Isotropic layer with a thin parallelepipedic inclusion.
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 is the Laplace operator in Cartesian rectangular coordinate system.

We approximate the function 
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Here, 
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 are unknown approximating temperature values.

By substituting the expression (7) in equation (6), we obtain:
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Fig. 2. Approximation of the function ((0,0,z).

4. Construction of analytical solution 
to the boundary problem


Applying the Fourier integral transform by the coordinates 
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 to the equation (8) and to the boundary conditions (3) and taking into account the relation (4), we obtain the ordinary differential equation with constant coefficients 
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and boundary conditions
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The general solution of the equation (9) is:
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where 
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Having applied the boundary conditions (10), a partial solution of the problem (9), (10) is obtained
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Here,
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Changing the relation (12) to the original, we obtain the expression for the required temperature
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(13)

The unknown approximating temperature values 
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Thus, the desired temperature field in nonhomogeneous layer is described by the formula (13) from which we receive the temperature value at an arbitrary point of layer and of foreign inclusion.

5. Conclusions


Using generalized functions and piecewise linear approximation of excess temperature 
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, with the expression (7), the thermal conductivity equation (8) with a singular right-hand side has been built. Using the Fourier integral transform, the analytical solution (13) of the boundary thermal conductivity problem (1), (3) has been found, which allows in an arbitrary point to calculate the temperature value based on developed new algorithms and software tools and to predict operation modes of individual elements and blocks of microelectronic devices and to identify the unknown parameters as well as increase the heat resistance, which increases their lifetime. 
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