Semiconductor Physics, Quantum Electronics & Optoelectronics. 2012. V. 15, N 4. P. 310-320.
DOI: https://doi.org/
10.15407/spqeo15.04.310



References

1. S.A. Dembovsky, A.S. Zyubin, F.V. Grigor'ev, Modeling of hypervalent configurations, valence alternation pairs, deformed structure, and properties of a-S and a-As2S3. Semiconductors, 32(8), p. 843-849 (1998).
https://doi.org/10.1134/1.1187470
 
2. M. Munzar, L. Tichy, Kinetics of photo-darkening abd self-bleaching in amorphous As2S3 and As2Se3 thin films. Phys. Stat. Sol. (RRL), 1(2), p. R74-R76 (2007).
 
3. K. Shimakawa, N. Yoshida, A. Ganjo, Y. Kuzukawa, J. Singh, A model for the photostructural changes in amorphous chalcogenides. Philos. Mag. Lett., 77(3), p. 153-158 (1998).
https://doi.org/10.1080/095008398178598
 
4. K. Tanaka, Photoinduced structural changes in amorphous semiconductors. Semiconductors, 32(8), p. 861-866 (1998).
https://doi.org/10.1134/1.1187473
 
5. K. Shimakawa, A. Kolobov, S.R. Elliott, Photoinduced effects and metastability in amorphous semiconductors and insulators. Adv. Phys., 44(6), p. 475-588 (1995).
https://doi.org/10.1080/00018739500101576
 
6. T.S. Kavetskyy, Impact of the sample thickness and y-irradiation dose on the occurrence of radiation-induced optical effects in chalcogenide vitreous semiconductors of the Ge-Sb-S system. Semiconductors, 45(4), p. 499-502 (2011).
https://doi.org/10.1134/S1063782611040105
 
7. O.I. Shpotyuk, R.Ya. Golovchak, A.P. Kovalskiy, T.S. Kavetskyy, Time and temperature stability of radiation-induced changes of optical properties in ternary systems of chalcogenide vitreous semiconductors. Functional Materials, 10(2), p. 317-321 (2003).
 
8. O.I. Shpotyuk, T.S. Kavetskyy, A.P. Kovalskiy, V. Pamukchieva, Gamma-irradiation effect on the optical properties of chalcogenide glasses. Proc. SPIE, 4415, p. 278-283 (2001).
https://doi.org/10.1117/12.425506
 
9. O. Shpotyuk, A. Kovalskiy, T. Kavetskyy, R. Golovchak, Post-irradiation thermally stimulated recovering effects in some ternary chalcogenide glasses. J. Optoelectron. Adv. Mater., 5(5), p. 1169-1179 (2003).
 
10. O.I. Shpotyuk, A.P. Kovalskiy, T.S. Kavetskyy, R.Ya. Golovchak, Threshold restoration effects in y-irradiated chalcogenide glasses. J. Non-Cryst. Solids, 351, p. 993-997 (2005).
https://doi.org/10.1016/j.jnoncrysol.2004.12.010
 
11. V. Balitska, R. Golovchak, A. Kovalskiy, E. Skordeva, O.I. Shpotyuk, Effect of Co60 y-irradiation on the optical properties of As-Ge-S glasses. J. Non-Cryst. Solids, 326&327, p. 130-134 (2003).
 
12. A. Feltz, Amorphous and Vitreous Inorganic Solids. Moscow, Mir, 1986 (in Russian).
 
13. H.F. Poulsen, J. Neuefeind, H.-B. Neumann, J.R. Schneider, M.D. Zeidler, Amorphous silica studied by high energy X-ray diffraction. J. Non-Cryst. Solids, 188, p. 63-74 (1995).
https://doi.org/10.1016/0022-3093(95)00095-X
 
14. J. Krogh-Moe, A method for converting experimental X-ray intensities to an absolute scale. Acta Cryst., 9, p. 951-953 (1956).
https://doi.org/10.1107/S0365110X56002655
 
15. N. Norman, The Fourier transform method for normalizing intensities. Acta Cryst., 10, p. 370-373 (1957).
https://doi.org/10.1107/S0365110X57001085
 
16. H.H.M. Balyuzi, Analytic approximation to incoherently scattered X-ray intensities. Acta Cryst. A, 31, p. 600-602 (1975).
https://doi.org/10.1107/S0567739475001295
 
17. T.E. Faber, J.M. Ziman, A theory of the electrical properties of liquid metals. Philos. Mag., 11(109), p. 153-173 (1965).
https://doi.org/10.1080/14786436508211931
 
18. T. Kavetskyy, O. Shpotyuk, I. Kaban, W. Hoyer, Radiation-modified structure of Ge25Sb15S60 and Ge35Sb5S60 glasses. J. Chem. Phys., 128(24), 244514(1-8) (2008).
 
19. T. Kavetskyy, O. Shpotyuk, I. Kaban, W. Hoyer, Atomic- and void-species nanostructures in chalcogenide glasses modified by high energy gamma-irradiation. J. Optoelectron. Adv. Mater., 9(10), p. 3247-3252 (2007).
 
20. H. Hamanaka, S. Minomura, K. Tsuji, Comparative studies of pressure and photo induced structural changes in As2S3 glass. J. Non-Cryst. Solids, 137&138, p. 977-980 (1991).
 
21. S.R. Elliott, Scattering studies of photostructural changes in chalcogenide glasses. J. Non-Cryst. Solids, 59&60, p. 899-908 (1983).
 
22. S. Soyer-Uzun, S. Sen, C.J. Benmore, B.G. Aitken, Compositional variation of short- and intermediate-range structure and chemical order in Ge-As sulfide glasses: A neutron diffraction study. J. Phys. Chem. C, 112, p. 7263-7269 (2008).
https://doi.org/10.1021/jp7115388
 
23. S. Soyer-Uzun, S. Sen, B.G. Aitken, Newtork vs molecular structural characteristics of Ge-doped arsenic sulfide glasses: A combined neutron/X-ray diffraction, extended X-ray absorption fine structure, and Raman spectroscopic study. J. Phys. Chem. C, 113, p. 6231-6242 (2009).
https://doi.org/10.1021/jp810446g
 
24. R. Kaplow, S.L. Strong, B.L. Averbach, Radial density functions for liquid mercury and lead. Phys. Rev., 138, p. A1336-A1345 (1965).
https://doi.org/10.1103/PhysRev.138.A1336
 
25. E.R. Skordeva, D.D. Arsova, A topological phase transition in ternary chalcogenide films. J. Non-Cryst. Solids, 192&193, p. 665-668 (1995).
 
26. K. Tanaka, Structural phase transitions in chalcogenide glasses. Phys. Rev. B, 39(2), p. 1270-1279 (1989).
https://doi.org/10.1103/PhysRevB.39.1270
 
27. L. Tichy, H. Ticha, Is the chemical threshold in certain chalcogenide glasses responsible for the threshold at the mean coordination number of approximately 2.7?. Phil. Mag. B, 79(2), p. 373-380 (1999).
https://doi.org/10.1080/13642819908206805
 
28. A.V. Stronski, M. Vlcek, P.F. Oleksenko, Fourier Raman spectroscopy studies of the As40S60-xSex glasses. Semiconductor Physics, Quantum Electronics & Optoelectronics, 4(3), p. 210-213 (2001).
 
29. I.P. Kotsalas, D. Papadimitriou, C. Raptis, M. Vlcek, M. Frumar, Raman study of photo¬structural changes in amorphous. J. Non-Cryst. Solids, 226, p. 85-91 (1998).
https://doi.org/10.1016/S0022-3093(97)00493-6
 
30. K. Sangwal, J. Borc, T. Kavetskyy, Study of microindentation cracks in bismuth-doped arsenic selenide glasses. J. Non-Cryst. Solids, 357, p. 3117-3122 (2011).
https://doi.org/10.1016/j.jnoncrysol.2011.05.001
 
31. O.I. Shpotyuk, Radiation-induced effects in chalcogenide vitreous semiconductors. Semiconducting Chalcogenide Glass I: Glass Formation, Structure, and Stimulated Transformations in Chalcogenide Glasses, Semiconductors and Semimetals, edited by R. Fairman and B. Ushkov, Amsterdam-Boston-London-New York-Oxford-Paris-San Diego-San Francisco-Singapore-Sydney-Tokyo, Elsevier Academic Press, 78, p. 215-260 (2004).
https://doi.org/10.1016/s0080-8784(04)80048-6
 
32. E. Bychkov, M. Miloshova, D.L. Price, C.J. Benmore, A. Lorriaux, Short, intermediate and mesoscopic range order in sulfur-rich binary glasses. J. Non-Cryst. Solids, 352, p. 63-70 (2006).
https://doi.org/10.1016/j.jnoncrysol.2005.11.002
 
33. C.J. Brabec, Structural model of amorphous arsenic sulfide. Phys. Rev. B, 44(24), p. 13332-13342 (1991).
https://doi.org/10.1103/PhysRevB.44.13332
 
34. T.G. Fowler, S.R. Elliott, Continuos random network models for a-As2S3. J. Non-Cryst. Solids, 92, p. 31-50 (1987).
https://doi.org/10.1016/S0022-3093(87)80357-5
 
35. F. Shimojo, K. Hoshino, Y. Zempo, Intermediate-range order in liquid and amorphous As2S3 by ab initio molecular-dynamics simulations. J. Non-Cryst. Solids, 312-314, p. 388-391 (2002).
https://doi.org/10.1016/S0022-3093(02)01759-3
 
36. W. Zhou, M. Pasesler, D.E. Sayers, Structure of germanium-selenium glasses: An X-ray-absorption fine-structure study. Phys. Rev. B, 43(3), p. 2315-2321 (1991).
https://doi.org/10.1103/PhysRevB.43.2315
 
37. F. Kakinuma, T. Fukunaga, K. Suzuki, Structural study of GexSb40-xS60 (x = 10, 20 and 30) glasses. J. Non-Cryst. Solids, 353, p. 3045-3048 (2007).
https://doi.org/10.1016/j.jnoncrysol.2007.05.037
 
38. D. Arsova, E. Skordeva, D. Nesheva, E. Vateva, A. Perakis, C. Raptis, A comparative Raman study of the local structure in (Ge2S3)(As2S3)1-x and (GeS2)(As2S3)1-x glasses. Glass Phys. Chem., 26(3), p. 247-251 (2000).
 
39. T. Kavetskyy, N. Pavlyukh, V. Tsmots, W. Wang, J. Ren, G. Chen, A.L. Stepanov, IR impurity absorption in GeS2-In2S3-AgI chalcohalide glasses. In book: NATO Science for Peace and Security Series B: Physics and Biophysics. Chapter 25 Nanotechnological basis for advanced sensors ed. by J.P. Riethmaier, P. Paunovic, W. Kulisch, C. Popov, P. Petkov, Berlin, Springer, p. 231-234 (2011).
https://doi.org/10.1007/978-94-007-0903-4_25
 
40. A. Chrissanthopoulos, P. Javari, I. Kaban, S. Gruner, T. Kavetskyy, J. Borc, W. Wang, J. Ren, G. Chen, S.N. Yannopoulos, Structure of AgI-doped Ge-In-S glasses: Experiment, reverse Monte Carlo modelling, and density functional calculations. J. Solid State Chem. (2012); 
https://doi.org/10.1016/j.jssc.2012.03.046
 
41. T.S. Kavetskyy, O. E aula, V.F. Valeev, V.I. Nuzhdin, N.M. Lyadov, A.L. Stepanov, Raman, positron annihilation and Doppler broadening spectroscopy of gamma-irradiated and Cu-ion implanted Ge15.8As21S63.2 glass. In book: Coherent optics and optical spectroscopy: XV Intern. junior sci. school, 24-26 October 2011. Ed. by M.Kh. Salakhov. Kazan, Kazan Univ., 15, p. 86-89 (2011).
 
42. T. Kavetskyy, M. Vakiv, O. Shpotyuk, Charged defects in chalcogenide vitreous semiconductors studied with combined Raman scattering and PALS methods. Radiation Measurements, 42, p. 712-714 (2007).
https://doi.org/10.1016/j.radmeas.2007.02.059
 
43. T. Kavetskyy, K. Kolev, V. Boev, P. Petkov, T. Petkova, A.L. Stepanov, Nanovoids in glasses and polymers probed by positron annihilation lifetime spectroscopy. In book: NATO Science for Peace and Security Series B: Physics and Biophysics. Chapter 11 Nanotechnological basis for advanced sensors, ed. by J.P. Riethmaier, P. Paunovic, W. Kulisch, C. Popov, P. Petkov. Berlin, Springer, p. 103-110 (2011).
https://doi.org/10.1007/978-94-007-0903-4_11