Semiconductor Physics, Quantum Electronics & Optoelectronics. 2012. V. 15, N 4. P. 345-350.
DOI: https://doi.org/
10.15407/spqeo15.04.345



References

1. Y. Mizushima and A. Yoshikava, Photoprocessing and lithographic applications, in: Amorphous Semiconductors Technologies and Devices (Y. Hamakava, Ed.). OHM, Tokyo, and North-Holland, Amsterdam, 1982, p. 277-295.
 
2. G.H. Bernstein, W.P. Liu, Y.N. Khawaja, M.N. Kozicki and D.K. Ferry, High resolution electron beam lithography with negative and inorganic resists. J. Vac. Sci. Technol. B6(6), p. 2298-2307 (1988).
https://doi.org/10.1116/1.584074
 
3. K. Saito, Y. Utsugi, and A. Yoshikawa, X-ray lithography with Ag-Se/Ge-Se inorganic resist using synchrotron radiation. J. Appl. Phys. 63(2), p. 565-567 (1988).
https://doi.org/10.1063/1.340087
 
4. S.H. Wong, M. Thiel, P. Brodersen, D. Fenske, G.A. Ozin, M. Wegener, and G. von Freymann, Highly selective wet etch for high-resolution three-dimensional nanostructures in arsenic sulfide all-inorganic photoresist. Chem. Mater. 19(17), p. 4213-4221 (2007).
https://doi.org/10.1021/cm070756y
 
5. M. Wuttig & N. Yamada, Phase-change materials for rewriteable data storage. Nature Materials, 6, p. 824-832 (2007).
https://doi.org/10.1038/nmat2009
 
6. I.Z. Indutnyy, M.T. Kostyshyn, I.P. Kasjarum, V.I. Min'ko, E.V. Michailovska, P.F. Romanenko, Photostimulated Interactions in Metal-Semiconductor Structures. Naukova Dumka, Kiev, 1992 (in Russian).
 
7. Photo-Induced Metastability in Amorphous Semiconductors, ed. by A.V. Kolobov. Wiley, New York, 2003.
https://doi.org/10.1002/9783527602544
 
8. K. Richardson, L. Petit, N. Carlie, B. Zdyrko, I. Luzinov, J. Hu, A. Agarval, L. Kimerling, T. Anderson and M. Richardson, Progress on the fabrication of on-chip integrated chalcogenide glass (ChG)-based sensors. J. Nonlinear Opt. Phys. & Materials, 19(1), p. 75-99 (2010).
https://doi.org/10.1142/S0218863510005042
 
9. M.-L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J.Le Person, F. Colas, C. Compere, and B. Bureau, Chalcogenide glass optical waveguides for infrared biosensing. Sensors, 9, p. 7398-7411 (2009).
https://doi.org/10.3390/s90907398
 
10. A.V. Kolobov, K. Tanaka, Nanoscale mechanism of photo-induced metastability and reversible photodarkening in chalcogenide vitreous semiconductors. Fizika i tekhnika poluprovodnikov, 32(8), p. 899-904 (1998), in Russian.
 
11. A. Ganjoo, H. Jain, S. Khalid, Atomistic observation of photo-expansion and photo-contraction in chalcogenide films by in situ EXAFS. J. Non-Crystalline Solids, 354, p. 2673-2678 (2008).
https://doi.org/10.1016/j.jnoncrysol.2007.09.055
 
12. V.A. Dan'ko, I.Z. Indutnyi, V.I. Min'ko, P.E. Shepelyavyi, O.V. Bereznova, and O.S. Litvin, Photoinduced etching of thin films of chalcogenide glassy semiconductors. Semiconductors, 46(4), p. 504-508 (2012).
https://doi.org/10.1134/S1063782612040057
 
13. V.A. Dan'ko, I.Z. Indutnyi, V.I. Min'ko, P.E. Shepelyavyi, M.V. Lukyanyuk, and O.S. Litvin, Interference photolithography using photoetching effect in chalcogenide films. J. Non-Oxide Glasses, 3(2), p. 13-18 (2012).
 
14. K. Shtekhelmaher, in: Thin-film Microelectronics, ed. by L. Hollend. Mir, Moscow, 1968 (in Russian).
 
15. Patent of the Russian Federation – 2008285, IC5 03 15/00, 23/00 (1994). Solution for negative etching of chalcogenide glasses, I.Z. Indutnyi, S.A. Kostyukevich, P.E. Shepeliavyi. Otkrytiia, izobreteniia, – 4. Publ. 1994 (in Russian).
 
16. V.A. Dan'ko, I.Z. Indutnyi, V.I. Min'ko, and P.E. Shepelyavyi, Interference photolithography with the use of resists on the basis of chalcogenide glassy semiconductors. Optoelectronics, Instrumentation and Data Processing, 46(5), p. 483-490 (2010).
https://doi.org/10.3103/S8756699011050116
 
17. A.I. Stetsun, Extended Abstract of Candidate's Dissertation. Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, Kyiv, 1994.
 
18. A.V. Kolobov and K. Tanaka, in: Handbook of Advanced Electronic and Photonic Materials and Devices, ed. by H.S. Nalwa. Academic, San Diego, 5(2), 2001.
 
19. A.V. Kolobov and J. Tominaga, Chalcogenide glasses in optical recording: Recent progress. J. Optoelectr. and Adv. Mater., 4(3), p. 679-686 (2002).
 
20. M.L. Trunov, P.M. Lytvyn, P.M. Nagy, and O.M. Dyachyns'ka, Real-time atomic force microscopy imaging of photoinduced surface deformation in chalcogenide films. Appl. Phys. Lett. 96, 111908 (2010).
https://doi.org/10.1063/1.3360229
 
21. K. Tanaka, N. Kawakami, and A. Odajima, Photoinduced elastic changes in amorphous As2S3 films. Jpn. J. Appl. Phys., Part 1, 20(12), p. L874-L876 (1981).
 
22. H. Fritzsche, Photo-induced fluidity of chalcogenide glasses. Solid State Communs. 99(3), p. 153-155 (1996).
https://doi.org/10.1016/0038-1098(96)00218-9
 
23. A.V. Kolobov, H. Oyanagi, K. Tanaka and Ke Tanaka, Structural study of amorphous selenium by in situ EXAFS: Observation of photoinduced bond alternation. Phys. Rev. B, 55, p. 726-734 (1997).
https://doi.org/10.1103/PhysRevB.55.726
 
24. V.V. Poborchii, A.V. Kolobov, and K. Tanaka, Photomelting of selenium at low temperature. Appl. Phys. Lett. 74(2), p. 215 (1999).
https://doi.org/10.1063/1.123297
 
25. D. Maystre, R. Petit, Essai de determination theorique du profil optimal d'un reseau holographique. Opt. Communs. 4(1), p. 25-28 (1971).
https://doi.org/10.1016/0030-4018(71)90119-2
 
26. E.G. Loewen, M. Neviere, D. Maystre, Grating efficiency theory as it applies to blazed and holographic gratings. Appl. Opt. 16(10), p. 2711-2721 (1977).
https://doi.org/10.1364/AO.16.002711
 
27. L.A. Dmitrieva, I.V. Golubenko, G.M. Savitskii, Diffraction efficiency of holographic gratings of symmetric profiles. Optiko-mekhanich. promyshlennost', N 1, p. 4-6 (1985), in Russian.