Semiconductor Physics, Quantum Electronics & Optoelectronics. 2012. V. 15, N 4. P. 370-375.
DOI: https://doi.org/
10.15407/spqeo15.04.370



References

1. V.I. Bespalov, G.A. Pasmanik, Nonlinear Optics and Adaptive Laser Systems. Moscow, Nauka, 1985 (in Russian).
 
2. G.S. Felinskiy, P.A. Korotkov, Simulation of multiwave pumped fiber Raman amplifiers. Semiconductor Physics, Quantum Electronics & Optoelectronics, 9(3), p. 35-39 (2006).
 
3. C.A. Sacchi, C.H. Townes, J.R. Lifshitz, Anti-Stokes generation in trapped filaments of light. Phys. Rev. 174(2), p. 439-448 (1968).
https://doi.org/10.1103/PhysRev.174.439
 
4. N.E. Kornienko, V.I. Maliy, G.V. Ponezha, E.A. Ponezha, The nature of the frequency-angular structure of radiation in stimulated Raman scattering in liquids. Izvestiia Akademii Nauk UkrSSR, Ser. A, 4, p. 65-68 (1983), in Russian.
 
5. A.I. Ivanisik, V.I. Maliy, G.V. Ponezha, Cherenkov-type radiation under conditions of Raman light scattering in self-focusing liquids. Optics and Spectroscopy, 82(3), p. 410-416 (1997).
 
6. A.I. Ivanisik, V.I. Maliy, G.V. Ponezha, Spectrum of anti-Stokes stimulated Raman scattering from the moving focal regions of self-focusing. Optics and Spectroscopy, 90(4), p. 625-629 (2001).
https://doi.org/10.1134/1.1366759
 
7. Y.R. Shen, The Principles of Nonlinear Optics. New York, Wiley, 1984.
 
8. A.I. Ivanisik, V.I. Maliy, G.V. Ponezha, Effect of self-focusing on the angular spectra of stimulated Raman scattering. Optics and Spectroscopy 85(1), p. 78-84 (1998).
 
9. R.V. Johnson, J.H. Marburger, Relaxation oscillation in stimulated Raman and Brillouin scattering. Phys. Rev. A, 4(3), p. 1175-1182 (1971).
https://doi.org/10.1103/PhysRevA.4.1175