Semiconductor Physics, Quantum Electronics & Optoelectronics. 2012. V. 15, N 4. P. 393-400.
DOI: https://doi.org/
10.15407/spqeo15.04.393



References

1. B A Joyce, Molecular beam epitaxy. Repts. Progr. Phys. 48(12), p. 1637-1698 (1985).
https://doi.org/10.1088/0034-4885/48/12/002
 
2. Chang Yang, Wei Chen, Brian Quang Bui, and Guangya Xiang, Recent progress on the liposomes loaded with quantum dots. Rev. Nanosci. Nanotechnol. 1(4), p. 257-270 (2012).
https://doi.org/10.1166/rnn.2012.1017
 
3. Bharat Bhushan, Springer Handbook of Nanotechnology. Springer, 2007.
https://doi.org/10.1007/978-3-540-29857-1
 
4. Edward L. Wolf, Nanophysics and Nanotechnology. John Wiley & Sons, 2006.
 
5. G.A. Ozin, A.C. Arsenault, L. Cademartiri, Nanochemistry: A Chemical Approach to Nanomaterials. Royal Society of Chemistry Publishing, 2009.
 
6. Tuan Vo-Dinh, Nanotechnology in Biology and Medicine: Methods, Devices, and Applications. Taylor & Francis Group, 2007.
 
7. Rahul Shetty, Nanotechnology: the Future in Medicine. Mesocore Technologies Inc., Quebec, Canada, 2006.
 
8. X. Huang, P.K. Jain, I.H. El-Sayed, M.A. El-Sayed, Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med. Sci. 23, p. 217-228 (2008).
https://doi.org/10.1007/s10103-007-0470-x
 
9. B.N. Khlebtsov, E.V. Panfilova, G.S. Terentyuk, I.L. Maksimova, A.V. Ivanov, N.G. Khebtsov, Plasmonic nanopowders for photothermal therapy of tumors. Langmuir, 28(24), p. 8994-9002 (2012).
https://doi.org/10.1021/la300022k
 
10. D. Pissuwan, S.M. Valenzuela, and M.B. Cortie, Prospects for gold nanorod particles in diagnostic and therapeutic applications. Biotechnol. and Genetic Eng. Rev. 25, p. 93-112 (2008).
https://doi.org/10.5661/bger-25-93
 
11. V. Lozovski, V. Lysenko, V. Piatnytsia, O. Scherbakov, N. Zholobak, M. Spivak, Physical point of view for antiviral effect caused by the interaction between the viruses and nanoparticles. J. Bionanosci. 6(2), p. 109-112 (2012).
https://doi.org/10.1166/jbns.2012.1084
 
12. L. Zhang, F.X. Gu, J.M. Chan, A.Z. Wang, R.S. Langer and O.C. Farokhzad, Nanoparticles in medicine: Therapeutic applications and developments. Clinical Pharmacology& Therapeutics, 83(5), p. 761-769 (2008).
https://doi.org/10.1038/sj.clpt.6100400
 
13. W.H. De Jong and P.J.A. Borm, Drug delivery and nanoparticles: Applications and hazards. Intern. J. Nanomedicine 3(2), p. 133-149 (2008).
https://doi.org/10.2147/IJN.S596
 
14. A.Z. Wang, R. Langer, and O.C. Farokhzad, Nanoparticle delivery of cancer drugs. Annu. Rev. of Medicine, 63, p. 185-198 (2012).
https://doi.org/10.1146/annurev-med-040210-162544
 
15. A. Dmitriev, Integrated Analytical Systems: Nanoplasmonic Sensors. Springer, 2012.
https://doi.org/10.1007/978-1-4614-3933-2
 
16. A. El-Ansary, L.M. Faddah, Nanoparticles as biochemical sensors. Nanotechnology, Science and Applications, 3, p. 65-76 (2010).
https://doi.org/10.2147/NSA.S8199
 
17. V. Lozovski, V. Piatnytsia, The potential of the interaction between of two nonpoint nano-particles. J. Computat. Theor. Nanosci. 10 (2013) to be published.
https://doi.org/10.1166/jctn.2013.3200
 
18. L.D. Landau & E.M. Lifshitz, Electrodynamics of Continuous Media (Vol. 8, A Course of Theoretical Physics). Pergamon Press, 1960.
 
19. H. Kleinert, Gauge Fields in Condensed Matter, I. World Scientific, Singapore, 1989.
https://doi.org/10.1142/0356
 
20. V.Z. Lozovski and B.I. Khudik, The new mechanism of physical adsorption on solid surface. I. Adsorption of nonpolar molecules. phys. status solidi (b), 158, p. 511-519 (1990).
 
21. E.V. Chenskii and V.V. Tarasenko, Theory of phase transitions into inhomogeneous states in organic ferroelectrics in an external electric field. Zhurnal Experiment. Teor. Fiziki, 83, p. 1089-1099 (1982), in Russian.
 
22. D.R.S. Talbot, J.R. Wilusima, Variational principles for inhomogeneous nonlinear media. IMA J. Appl. Math. 35(1), p. 39-54 (1985).
https://doi.org/10.1093/imamat/35.1.39
 
23. L. Yang, K. Dayal, A completely iterative method for the infinite domain electrostatic problem with nonlinear dielectric media. J. Comput. Phys. 230(21), p. 7821-7829 (2011).
https://doi.org/10.1016/j.jcp.2011.07.001
 
24. O. Keller, Local fields in the electrodynamics of mesoscopic media. Phys. Repts. 268, p. 85-262 (1996).
https://doi.org/10.1016/0370-1573(95)00059-3
 
25. D.K. Faddeev, V.N. Faddeeva, Computational Methods of Linear Algebra. Freeman, 1963.
 
26. V.I. Krylov, V.V. Bobkov, P.I. Monastyrnyi, Numerical Methods, 1-2. Nauka, Moscow, 1977 (in Russian).
 
27. L. Collatz, Funktionalanalysis und Numerische Mathematik. Springer, 1964.
 
28. V. Lozovski, The effective susceptibility concept in the electrodynamics of nano-systems. J. Computat. Theor. Nanosci. 7(10), p. 2077-2093 (2010).
https://doi.org/10.1166/jctn.2010.1588
 
29. A.A. Abrikosov, L.P. Gor'kov, I.E. Dzyaloshinskii, Quantum Field Theoretical Methods in Statistical Physics, 2ed. Pergamon, 1965.
 
30. Yu.S. Barash and V.L. Ginzburg, Some problems in the theory of Van der Waals forces. Uspekhi Fiz. Nauk, 27(7), p. 467-493 (1984), in Russian.
 
31. W.H. Dickhoff, D. Van Neck, Many-Body Theory Exposed! Propagator Description of Quantum Mechanics Many-Body Systems. World Scientific, 2005.
https://doi.org/10.1142/5804
 
32. H.B. Callen, T.A. Welton, Irrevesibility and generalized noise. Phys. Rev. 83(1) p. 34-40 (1951).
https://doi.org/10.1103/PhysRev.83.34
 
33. K. Tanabe, Field enhancement around metal nano¬particles and nanoshells: A systematic investigation. J. Phys. Chem. C, 112(40), p. 15721-15728 (2008).
https://doi.org/10.1021/jp8060009

 
34. A.R. Guerrero, Yun Zhang, R.F. Aroca, Experimental confirmation of local field enhancement determining far-field measurements with shell-isolated silver nanoparticles. Small 8(19), p. 2964-2967 (2012).
https://doi.org/10.1002/smll.201200750
 
35. H.H. Lara, N.V. Ayala-Nuez, L. Ixtepan-Turrent and C. Rodriguez-Padilla, Mode of antiviral action of silver nanoparticles against HIV-1. J. Nanobiotechnology, 8(1), p. 10 (2010).
https://doi.org/10.1186/1477-3155-8-1
 
36. N.A. Mazurkova, Yu.E. Spitsyna, N.V. Shikina, Z.R. Ismagilov, S.N. Zagrebel'nyi, and E.I. Ryabchikova, Interaction of titanium dioxide nanoparticles with influenza virus. Nanotechnologies in Russia, 5(5-6), p. 417-420 (2010).
https://doi.org/10.1134/S1995078010050174
 
37. R. Jaffe, Casimir effect and the quantum vacuum. Phys. Rev. D, 72(2), 021301 (2005).
https://doi.org/10.1103/PhysRevD.72.021301