Semiconductor Physics, Quantum Electronics & Optoelectronics. 2012. V. 15, N 4. P. 393-400.
References 1. B A Joyce, Molecular beam epitaxy. Repts. Progr. Phys. 48(12), p. 1637-1698 (1985).https://doi.org/10.1088/0034-4885/48/12/002 2. Chang Yang, Wei Chen, Brian Quang Bui, and Guangya Xiang, Recent progress on the liposomes loaded with quantum dots. Rev. Nanosci. Nanotechnol. 1(4), p. 257-270 (2012). https://doi.org/10.1166/rnn.2012.1017 3. Bharat Bhushan, Springer Handbook of Nanotechnology. Springer, 2007. https://doi.org/10.1007/978-3-540-29857-1 4. Edward L. Wolf, Nanophysics and Nanotechnology. John Wiley & Sons, 2006. 5. G.A. Ozin, A.C. Arsenault, L. Cademartiri, Nanochemistry: A Chemical Approach to Nanomaterials. Royal Society of Chemistry Publishing, 2009. 6. Tuan Vo-Dinh, Nanotechnology in Biology and Medicine: Methods, Devices, and Applications. Taylor & Francis Group, 2007. 7. Rahul Shetty, Nanotechnology: the Future in Medicine. Mesocore Technologies Inc., Quebec, Canada, 2006. 8. X. Huang, P.K. Jain, I.H. El-Sayed, M.A. El-Sayed, Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med. Sci. 23, p. 217-228 (2008). https://doi.org/10.1007/s10103-007-0470-x 9. B.N. Khlebtsov, E.V. Panfilova, G.S. Terentyuk, I.L. Maksimova, A.V. Ivanov, N.G. Khebtsov, Plasmonic nanopowders for photothermal therapy of tumors. Langmuir, 28(24), p. 8994-9002 (2012). https://doi.org/10.1021/la300022k 10. D. Pissuwan, S.M. Valenzuela, and M.B. Cortie, Prospects for gold nanorod particles in diagnostic and therapeutic applications. Biotechnol. and Genetic Eng. Rev. 25, p. 93-112 (2008). https://doi.org/10.5661/bger-25-93 11. V. Lozovski, V. Lysenko, V. Piatnytsia, O. Scherbakov, N. Zholobak, M. Spivak, Physical point of view for antiviral effect caused by the interaction between the viruses and nanoparticles. J. Bionanosci. 6(2), p. 109-112 (2012). https://doi.org/10.1166/jbns.2012.1084 12. L. Zhang, F.X. Gu, J.M. Chan, A.Z. Wang, R.S. Langer and O.C. Farokhzad, Nanoparticles in medicine: Therapeutic applications and developments. Clinical Pharmacology& Therapeutics, 83(5), p. 761-769 (2008). https://doi.org/10.1038/sj.clpt.6100400 13. W.H. De Jong and P.J.A. Borm, Drug delivery and nanoparticles: Applications and hazards. Intern. J. Nanomedicine 3(2), p. 133-149 (2008). https://doi.org/10.2147/IJN.S596 14. A.Z. Wang, R. Langer, and O.C. Farokhzad, Nanoparticle delivery of cancer drugs. Annu. Rev. of Medicine, 63, p. 185-198 (2012). https://doi.org/10.1146/annurev-med-040210-162544 15. A. Dmitriev, Integrated Analytical Systems: Nanoplasmonic Sensors. Springer, 2012. https://doi.org/10.1007/978-1-4614-3933-2 16. A. El-Ansary, L.M. Faddah, Nanoparticles as biochemical sensors. Nanotechnology, Science and Applications, 3, p. 65-76 (2010). https://doi.org/10.2147/NSA.S8199 17. V. Lozovski, V. Piatnytsia, The potential of the interaction between of two nonpoint nano-particles. J. Computat. Theor. Nanosci. 10 (2013) to be published. https://doi.org/10.1166/jctn.2013.3200 18. L.D. Landau & E.M. Lifshitz, Electrodynamics of Continuous Media (Vol. 8, A Course of Theoretical Physics). Pergamon Press, 1960. 19. H. Kleinert, Gauge Fields in Condensed Matter, I. World Scientific, Singapore, 1989. https://doi.org/10.1142/0356 20. V.Z. Lozovski and B.I. Khudik, The new mechanism of physical adsorption on solid surface. I. Adsorption of nonpolar molecules. phys. status solidi (b), 158, p. 511-519 (1990). 21. E.V. Chenskii and V.V. Tarasenko, Theory of phase transitions into inhomogeneous states in organic ferroelectrics in an external electric field. Zhurnal Experiment. Teor. Fiziki, 83, p. 1089-1099 (1982), in Russian. 22. D.R.S. Talbot, J.R. Wilusima, Variational principles for inhomogeneous nonlinear media. IMA J. Appl. Math. 35(1), p. 39-54 (1985). https://doi.org/10.1093/imamat/35.1.39 23. L. Yang, K. Dayal, A completely iterative method for the infinite domain electrostatic problem with nonlinear dielectric media. J. Comput. Phys. 230(21), p. 7821-7829 (2011). https://doi.org/10.1016/j.jcp.2011.07.001 24. O. Keller, Local fields in the electrodynamics of mesoscopic media. Phys. Repts. 268, p. 85-262 (1996). https://doi.org/10.1016/0370-1573(95)00059-3 25. D.K. Faddeev, V.N. Faddeeva, Computational Methods of Linear Algebra. Freeman, 1963. 26. V.I. Krylov, V.V. Bobkov, P.I. Monastyrnyi, Numerical Methods, 1-2. Nauka, Moscow, 1977 (in Russian). 27. L. Collatz, Funktionalanalysis und Numerische Mathematik. Springer, 1964. 28. V. Lozovski, The effective susceptibility concept in the electrodynamics of nano-systems. J. Computat. Theor. Nanosci. 7(10), p. 2077-2093 (2010). https://doi.org/10.1166/jctn.2010.1588 29. A.A. Abrikosov, L.P. Gor'kov, I.E. Dzyaloshinskii, Quantum Field Theoretical Methods in Statistical Physics, 2ed. Pergamon, 1965. 30. Yu.S. Barash and V.L. Ginzburg, Some problems in the theory of Van der Waals forces. Uspekhi Fiz. Nauk, 27(7), p. 467-493 (1984), in Russian. 31. W.H. Dickhoff, D. Van Neck, Many-Body Theory Exposed! Propagator Description of Quantum Mechanics Many-Body Systems. World Scientific, 2005. https://doi.org/10.1142/5804 32. H.B. Callen, T.A. Welton, Irrevesibility and generalized noise. Phys. Rev. 83(1) p. 34-40 (1951). https://doi.org/10.1103/PhysRev.83.34 33. K. Tanabe, Field enhancement around metal nano¬particles and nanoshells: A systematic investigation. J. Phys. Chem. C, 112(40), p. 15721-15728 (2008). https://doi.org/10.1021/jp8060009 34. A.R. Guerrero, Yun Zhang, R.F. Aroca, Experimental confirmation of local field enhancement determining far-field measurements with shell-isolated silver nanoparticles. Small 8(19), p. 2964-2967 (2012). https://doi.org/10.1002/smll.201200750 35. H.H. Lara, N.V. Ayala-Nuez, L. Ixtepan-Turrent and C. Rodriguez-Padilla, Mode of antiviral action of silver nanoparticles against HIV-1. J. Nanobiotechnology, 8(1), p. 10 (2010). https://doi.org/10.1186/1477-3155-8-1 36. N.A. Mazurkova, Yu.E. Spitsyna, N.V. Shikina, Z.R. Ismagilov, S.N. Zagrebel'nyi, and E.I. Ryabchikova, Interaction of titanium dioxide nanoparticles with influenza virus. Nanotechnologies in Russia, 5(5-6), p. 417-420 (2010). https://doi.org/10.1134/S1995078010050174 37. R. Jaffe, Casimir effect and the quantum vacuum. Phys. Rev. D, 72(2), 021301 (2005). https://doi.org/10.1103/PhysRevD.72.021301 |