Semiconductor Physics, Quantum Electronics & Optoelectronics. 2013. V. 16, N 4. P. 366-373.
DOI: https://doi.org/10.15407/spqeo16.04.366


References

1.    A.S. Marathay, Matrix-operator description of the propagation of polarized light through cholesteric liquid crystals. J. Opt. Soc. Am. 61, p. 1363-1372 (1971).
https://doi.org/10.1364/JOSA.61.001363
 
2.    R.C. Jones, A new calculus for the treatment of optical systems II. Proof of three general equivalence theorems. J. Opt. Soc. Am. 31, p. 493-499 (1941).
https://doi.org/10.1364/JOSA.31.000500
 
3.    H. Mueller, The foundation of optics. J. Opt. Soc. Am. 38, p. 661 (1948).
 
4.    R.C. Jones, A new calculus for the treatment of optical systems VII. Properties of the N-matrices. J. Opt. Soc. Am. 38, p. 671-685 (1948).
https://doi.org/10.1364/JOSA.38.000671
 
5.    R.M.A. Azzam, Propagation of partially polarized light through anisotropic media with or without depolarization. A differential 4×4 matrix calculus. J. Opt. Soc. Am. 68, p. 1756-1767 (1979).
https://doi.org/10.1364/JOSA.68.001756
 
6.    R.M.A. Azzam, and N.M. Bashara, Elipsometry and Polarized Light. Elsevier, 1987.
 
7.    R.M.A. Azzam, and N.M. Bashara, Simplified approach to the propagation of polarized light in anisotropic media-application to liquid crystals. J. Opt. Soc. Am. 62, p. 1252-1257 (1972).
https://doi.org/10.1364/JOSA.62.001252
 
8.    R.M.A. Azzam, N.M. Bashara, and B.E. Merrill, Trajectories describing the evolution of polarized light in homogeneous anisotropic media and liquid crystals. J. Appl. Opt. 12, p. 764-771 (1973).
https://doi.org/10.1364/AO.12.000764
 
9.    T.Z. Kosc, K.L. Marshall, A. Trajkovska-Petkoska et al. Progress in the development of polymer cholesteric liquid crystal flakes for display applications. Displays, 25(5), p. 171-176 (2004).
https://doi.org/10.1016/j.displa.2004.09.014
 
10.    B. Das, S. Vyas, J. Joseph et al. Transmission type twisted nematic liquid crystal display for three gray-level phase-modulated holographic data storage systems. Opt. and Las. in Eng. 47(11), p. 1150-1159 (2009).
https://doi.org/10.1016/j.optlaseng.2009.06.011
 
11.    J.L. Martínez, P. García-Martínez, M. del Mar Sánchez-López et al. Accurate color predictability based on a spectral retardance model of a twisted-nematic liquid-crystal display. Opt. Communs. 284 (10-11), p. 2441-2447 (2011).
https://doi.org/10.1016/j.optcom.2011.01.037
 
12.    I.S. Kolomiets, S.N. Savenkov, Ye.A. Oberemok, Studing orthogonalization properties of longitudinally inhomogeneous nondepolarizing medium. Registration, data storage and processing, 15, N1, p. 23-30 (2013), in Russian.
 
13.    I.S. Kolomiets, S.N. Savenkov, Ye.A. Oberemok, A.S. Klimov, The solution of the spectral problem for longitudinally inhomogeneous nondepolarizing media. Metallofizika i noveishie tekhnologii, 35, N 9, p. 1001-1011 (2013), in Russian.
 
14.    I.S. Kolomiets, S.N. Savenkov, Ye.A. Oberemok. Eigenpolarizations orthogonality conditions for the first and second Jones equivalence theorems in approximation of homogeneous and layered media. Metallofizika i noveishie tekhnologii, 33, p. 493-502 (2011).
 
15.    S.N. Savenkov, V.V. Marienko, E.A. Oberemok, and O.I. Sydoruk, Generalized matrix equivalence theorem for polarization theory. Phys. Rev. E, 74, 056607 (2006).
https://doi.org/10.1103/PhysRevE.74.056607
 
16.    R.M.A. Azzam, Polarization orthogonalization properties of optical systems. Appl. Phys. A, 13, p. 281-285 (1977).
https://doi.org/10.1007/bf00882893
 
17.    S.N. Savenkov, and Y.V. Aulin, Orthogonal properties of homogeneous anisotropy medium. Proc. SPIE, 6536, p. 65360D (2007).
https://doi.org/10.1117/12.753448
 
18.    I.S. Kolomiets, S.N. Savenkov, Exploration evolution of polarization state in homogeneous anisotropic medium based on differential Mueller matrix model. Intern. Sci. and Practic. Conf., 2007, p. 99-100.