Semiconductor Physics, Quantum Electronics & Optoelectronics. 2014. V. 17, N 4. P. 336-340.
https://doi.org/10.15407/spqeo17.04.336


                                                                 

References

1. K.S. Min, K.V. Shcheglov, S.M. Yang, H.A. Atwater et al., Defect related versus excitonic visible light emission from ion beam synthesized Si nanocrystals . Appl. Phys. Lett. 69, p. 2033-2035 (1996).
https://doi.org/10.1063/1.116870
 
2. M. Fujii, A. Mimura, S. Hayashi, K. Yamammoto et al., Improvement in photoluminescence efficiency of SiO2 films contaning Si nanocrystals by P doping . J. Appl. Phys. 87, p. 1855-1857 (2000).
https://doi.org/10.1063/1.372103
 
3. D.X. Li, Y. He, J.Y. Feng, The study of nickel-induced enhancement of near-infrared luminescence in Si-rich silicon oxide films . Physica E, 41, p. 812-816 (2009).
https://doi.org/10.1016/j.physe.2009.01.004
 
4. M. Tinani, A. Mueller, Y. Gao et al., In situ real-time studies of nickel silicide phase formation . J. Vac. Sci. Technol. B, 19(2), p. 376-383 (2001).
https://doi.org/10.1116/1.1347046
 
5. F.F. Zhao, J.Z. Zheng, Z.X. Shen et al., Thermal stability of NiSi and NiSi2 thin films . Microelectron. Eng. 71(1), p. 104-111 (2004).
https://doi.org/10.1016/j.mee.2003.08.010
 
6. I.Z. Indutnyy, I.Yu. Maidanchuk, V.I. Min'ko, Visible photoluminescence from annealed porous SiOx films . J. Optoelectron. and Adv. Mater. 7, p. 1231-1236 (2005).
 
7. V.A. Dan'ko, I.Z. Indutnyy, I.Y. Maidanchuk et al., Formation of the photoluminescence structure based on SiOx porous films . Optoelektronika i poluprovodnikovaya tekhnika, 39, p. 65-72 (2004) (in Ukrainian).
 
8. I.Z. Indutnyi, E.V. Michailovskaya, P.E. Shepeliavyi and V.A. Dan'ko, Visible photoluminescence of selectively etched porous nc-Si-SiOx structures . Fizika tekhnika poluprovodnikov 44(2), p. 218-222 (2010) (in Russian) [Semiconductors, 44(2), p. 206-210 (2010)].
 
9. V.A. Dan'ko, V.Ya. Bratus', I.Z. Indutnyi, I.P. Lisovskyy, S.O. Zlobin, K.V. Michailovska, P.E. Shepeliavyi, Controlling the photo-luminescence spectra of porous nc-Si-SiOx structures by vapor treatment . Semiconductor Physics, Quantum Electronics & Optoelectronics, 13(4). p. 413-417 (2010).
 
10. V.Ya. Bratus', V.A. Yukhimchuk, L.V. Berezhinsky et al., Structural transformation and silicon nanocrystallite formation in SiOx films . Semiconductors, 35(7), p. 821-826 (2001).
https://doi.org/10.1134/1.1385719
 
11. M. Nakamura, Y. Mochizuki, K. Usami et al., Infrared absorption spectra and compositions of evaporated silicon oxide (SiOx) . Solid State Communs. 50, p. 1079-1081 (1984).
https://doi.org/10.1016/0038-1098(84)90292-8
 
12. I.Z. Indutnyi, K.V. Michailovska, V.I. Min'ko, P.E. Shepeliavyi, Effect of acetone vapor treatment on photoluminescence of porous nc-Si-SiOx nanostructures . Semiconductor Physics, Quantum Electronics & Optoelectronics, 12(2), p. 105-109 (2009).
 
13. D. Nesheva, C. Raptis, A. Perakis et al., Raman scattering and photoluminescence from Si nanoparticles in annealed SiOx thin films . J. Appl. Phys. 92, p. 4678-4683 (2002).
https://doi.org/10.1063/1.1504176
 
14. C. Garcia, B. Garrido, P. Pellegrino et al., Size dependence of lifetime and absorption cross section of Si nanocrysrals embedded in SiO2 . Appl. Phys. Lett. 82, p. 1595-1597 (2003).
https://doi.org/10.1063/1.1558894
 
15. C. Delerue, G. Allan, M. Lannoo, Theoretical aspects of the luminescence of porous silicon . Phys. Rev. B, 48, p. 11024-11036 (1993).
https://doi.org/10.1103/PhysRevB.48.11024
 
16. G. Zatrub, A. Podhorodecki, J. Misiewicz et al., On the nature of the stretched exponential photoluminescence decay for silicon nanocrystals . Nanoscale Res. Lett. 6, p. 106 (2011).
https://doi.org/10.1186/1556-276X-6-106
 
17. M. Dovrat, Y. Goshen, J. Jedrzejewski, I. Balberg, A. Sa'ar, Radiative versus nonradiative decay process in silicon nanocrystals probed by time-resolved photoluminescence spectroscopy . Phys. Rev. B, 69, 155311 (2004).
https://doi.org/10.1103/PhysRevB.69.155311
 
18. R. Sato, K. Murayama, A universal distribution function of relaxation in amorphous materials . Solid State Communs. 63, p. 625-627 (1987).
https://doi.org/10.1016/0038-1098(87)90867-2
 
19. A.F. van Driel, I.S. Nikolaev, P. Vergeer et al., Statistical analysis of time-resolved emission from ensembles of semiconductor quantum dots: interpretation of exponential decay models . Phys. Rev. B, 75, 035329 (2007).
https://doi.org/10.1103/PhysRevB.75.035329
 
20. G. Hadjisavvas, P.C. Kelires, Structure and energetics of Si nanocrystals embedded in α-SiO2 . Phys. Rev. Lett. 93, p. 226104 (2004).
https://doi.org/10.1103/PhysRevLett.93.226104
 
21. I. Mihalcescu, J.C. Vial, R. Romestain, Carrier localization in porous silicon investigated by time-resolved luminescence analysis . J. Appl. Phys. 80, p. 2404 (1996).
https://doi.org/10.1063/1.363076
 
22. M. Bhaskaran, S. Sriram, T.S. Perova et al., In situ micro-Raman analysis and X-ray diffraction of nickel silicide thin films on silica . Micron, 40(1), p. 89-93 (2009).
https://doi.org/10.1016/j.micron.2008.03.007
 
23. H.F. Yan, Y.J. Xing, Q.L. Hang, D.P. Yu, Y.P. Wang et al., Growth of amorphous silicon nanowires via a solid-liquid-solid mechanism . Chem. Phys. Lett. 323, p. 224-228 (2000).
https://doi.org/10.1016/S0009-2614(00)00519-4
 
24. Y. He, K. Ma, I. Bi, J.Y. Feng, Z.J. Zhang, Nickel-induced enhancement of photoluminescence from Si-rich silica films . Appl. Phys. Lett. 88, 031905 (2006).
https://doi.org/10.1063/1.2165292