Semiconductor Physics, Quantum Electronics & Optoelectronics. 2014. V. 17, N 4. P. 358-367.
https://doi.org/10.15407/spqeo17.04.358


                                                                 

References

1. X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang and H. Ning, A survey on gas sensing technology . Sensors, 12, p. 9635-9665 (2012).
https://doi.org/10.3390/s120709635
 
2. H. Gu, Z. Wang and Y. Hu, Hydrogen gas sensors based on semiconductor oxide nanostructures . Sensors, 12, p. 5517-5550 (2012).
https://doi.org/10.3390/s120505517
 
3. J. Gonga, Q. Chena, W. Fei and S. Seal, Micromachined nanocrystalline SnO2 chemical gas sensors for electronic nose . Sensors and Actuators, 102, p. 117-125 (2004).
https://doi.org/10.1016/j.snb.2004.02.055
 
4. G.E. Patil. D.D. Kajale, D.N. Chavan, N.K. Pawar, P.T. Ahire, S.D. Shinde, V.B. Gaikwad and G.H. Jain, Synthesis, characterization and gas sensing performance of SnO2 thin films prepared by spray pyrolysis . Bull. Mater. Sci., 34(1), p. 1-9 (2011).
https://doi.org/10.1007/s12034-011-0045-0
 
5. N. Yamazoe, Toward innovations of gas sensor technology . Sensors and Actuators, 108, p. 2-14 (2005).
https://doi.org/10.1016/j.snb.2004.12.075
 
6. A.S. Garde, LPG and NH3 Sensing properties of SnO2 thick film resistors prepared by screen printing technique . Sensors & Transducers Journal, 122(11), p. 128-142 (2010).
 
7. N.H. Al-Hardan, M.J. Abdullah, A. Abdul Aziz, Sensing mechanism of hydrogen gas sensor based on RF-sputtered ZnO thin films . Intern. J. Hydrogen Energy, 35, p. 4428-4434 (2010).
https://doi.org/10.1016/j.ijhydene.2010.02.006
 
8. A.S. Reddy, N.M. Figueiredo and A. Cavaleiro, Nanocrystalline Au:Ag:SnO2 films prepared by pulsed magnetron sputtering . Journal of Physics and Chemistry of Solids, 74, p. 825-829 (2013).
https://doi.org/10.1016/j.jpcs.2013.01.023
 
9. M.A. Camacho-Lopez, J.R. Galeana-Camacho, A. Esparza-Garcia, C. Sanchez-Perez and C.M. Julien, Characterization of nanostructured SnO2 films deposited by reactive DC-magnetron sputtering . Superficies y Vacio, 26(3), p. 95-99 (2013).
 
10. D. Leng, L. Wu, H. Jiang, Y. Zhao, J. Zhang,W. Li, and L. Feng, Preparation and properties of SnO2 film deposited by magnetron sputtering . Hindawi Publ. Corp. Intern. J. Photoenergy, 2012, Article ID 235971, 6 pages (2012).
 
11. A.F. Khan, M. Mehmood, A.M. Rana, and M.T. Bhatti, Effect of annealing on electrical resistivity of rf-magnetron sputtered nanostructured SnO2 thin films . Appl. Surf. Sci. 255, p. 8562-8565 (2009).
https://doi.org/10.1016/j.apsusc.2009.06.020
 
12. V.-M. Guerin, J. Rathousky, Th. Rauporte, Electrochemical design of ZnO hierarchical structures for dye-sensitized solar cells . Solar Energy Materials & Solar Cells, 102(8), p. 8-14 (2012).
https://doi.org/10.1016/j.solmat.2011.11.046
 
13. J.Y. Lao, J.Y. Huang. D.Z. Wang, Z.F. Ren, Hierarchical oxide nanostructures . J. Mater. Chem. 14, p. 770-773 (2004).
https://doi.org/10.1039/b311639e
 
14. L.S. Palatnik, M.J. Fuchs, and V.M. Kosevich, The Mechanism of Formation and Substructure of Condensed Films. Nauka, Moscow, 1972.
 
15. H. Meixner, U. Lampe, Metal oxide sensors . Sensors and Actuators, 33, p. 198-202 (1996).
https://doi.org/10.1016/0925-4005(96)80098-0
 
16. N.P. Klochko, G.S. Khrypunov, Y.O. Myagchenko, E.E. Melnychuk, V.R. Kopach, E.S. Klepikova, V.M. Lyubov, A.V. Kopach, Controlled growth of one-dimensional zinc oxide nanostructures in the pulsed electrodeposition mode . Semiconductors, 46, p. 825-831 (2012).
https://doi.org/10.1134/S1063782612060127