Semiconductor
Physics, Quantum Electronics & Optoelectronics. 2015. V. 18, N
4. P. 396-402. References 1. D.J. Cheney, E.A. Douglas, L. Liu et al., Reliability studies of AlGaN/GaN high electron mobility transistors. Semicond. Sci. Technol. 28, 074019 (2013). https://doi.org/10.1088/0268-1242/28/7/074019 2. J.P. Ibbetson, P.T. Fini, K.D. Ness, S.P. DenBaars, J.S. Speck, U.K. Mishra, Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors. Appl. Phys. Lett. 77(2), p. 250 (2000). https://doi.org/10.1063/1.126940 3. Z. Yan, G. Liu, J.M. Khan, A.A. Balandin, Graphene quilts for thermal management of high-power GaN transistors. Nature Communs. 3, P. 827 (2012). https://doi.org/10.1038/ncomms1828 4. S.P. McAlister, J.A. Bardwell, S. Haffouz, H. Tang, Self-heating and the temperature dependence of the dc characteristics of GaN heterostructure field effect transistors. J. Vac. Sci. Technol. A, 24(3), p. 624 (2006). https://doi.org/10.1116/1.2172921 5. S.A. Vitusevich, S.V. Danylyuk, N. Klein et al., Separation of hot-electron and self-heating effects in two-dimensional AlGaN/GaN-based conducting channels. Appl. Phys. Lett. 82(5), p. 748 (2003). https://doi.org/10.1063/1.1542928 6. J. Kuzmik, P. Javorka, A. Alam, M. Marso, M. Heuken, P. Kordos, Determination of channel temperature in AlGaN/GaN HEMTs grown on sapphire and silicon substrates using DC characterization method. IEEE Trans. Electron Devices, 49(8), p. 1496 (2002). https://doi.org/10.1109/TED.2002.801430 7. S. Choi, E.R. Heller, D. Dorsey, R. Vetury, S. Graham, Thermometry of AlGaN/GaN HEMTs using multispectral Raman features. IEEE Trans. Electron Devices, 60(6), p. 1898-1904 (2013). https://doi.org/10.1109/TED.2013.2255102 8. A. Sarua, H. Ji, M. Kuball, M.J. Uren, T. Martin, K.P. Hilton, R.S. Balmer, Integrated micro-Raman/infrared thermography probe for monitoring of self-heating in AlGaN/GaN transistor structures. IEEE Trans. Electron Devices, 53(10), p. 2438 (2006). https://doi.org/10.1109/TED.2006.882274 9. Y. Zhang, S. Feng, H. Zhu, J. Zhang, B. Deng, Two-dimensional transient simulations of the self-heating effects in GaN-based HEMTs. Microelectronics Reliability, 53, P.694-700 (2013). https://doi.org/10.1016/j.microrel.2013.02.004 10. S. Vitanov, V. Palankovski, S. Maroldt, R. Quay, High-temperature modeling of AlGaN/GaN HEMTs. Solid-State Electron. 54, p. 1105 (2010). https://doi.org/10.1016/j.sse.2010.05.026 11. N. Killat, M. Kuball, T.-M. Chou, U. Chowdhury, J. Jimenez, Temperature assessment of AlGaN/GaN HEMTs: A comparative study by Raman, electrical and IR thermography. International Reliability Physics Symposium, p. 528 (2010). https://doi.org/10.1109/irps.2010.5488777 12. R.J.T. Simms, J.W. Pomeroy, M.J. Uren, T. Martin, M. Kuball, Channel temperature determination in high-power AlGaN/GaN HFETs using electrical methods and Raman spectroscopy. IEEE Trans. Electron Devices, 55(2), p. 478 (2008). https://doi.org/10.1109/TED.2007.913005 13. M. Gonschorek, J.-F. Carlin, E. Feltin, M.A. Py, N. Grandjean, Self-heating in AlInN/AlN/GaN high power devices: Origin and impact on contact breakdown and IV characteristics. J. Appl. Phys. 109, 063720 (2011). https://doi.org/10.1063/1.3552932 14. W.D. Hu, X.S. Chen, Z.J. Quan, C.S. Xia, W. Lub, P.D. Ye, Self-heating simulation of GaN-based metal-oxide-semiconductor high-electron-mobility transistors including hot electron and quantum effects. J. Appl. Phys. 100, 074501 (2006), https://doi.org/10.1063/1.2354327 15. R. Bellman (Ed.), Mathematics in Science and Engineering. Academic Press, New York, 1965. 16. M. Kuball, J.M. Hayes, M.J. Uren, T. Martin, J.C.H. Birbeck, R.S. Balmer, B.T. Hughes, Measurement of temperature in active high-power AlGaN/GaN HFETs using Raman spectroscopy. IEEE Electron Device Lett. 23(7), p. 7 (2002). https://doi.org/10.1109/55.974795 17. B. Monemar, Fundamental energy gap of GaN from photoluminescence excitation spectra. Phys. Rev. B, 10(2), p. 676 (1974). https://doi.org/10.1103/PhysRevB.10.676 18. Y.P. Varshni, Temperature dependence of the energy gap in semiconductors. Physica, 34, p. 149-154 (1967). https://doi.org/10.1016/0031-8914(67)90062-6 19. A. Link, K. Bitzer, W. Limmer et al., Temperature dependence of the E2 and A1(LO) phonons in GaN and AlN. J. Appl. Phys. 86(11), p. 6256 (1999). https://doi.org/10.1063/1.371681 |