Semiconductor Physics, Quantum Electronics & Optoelectronics. 2015. V. 18, N 4. P. 403-409.
DOI: https://doi.org/10.15407/spqeo18.04.403


References

1.    Silicon Carbide: Recent Major Advances, ed. by W.J. Choyke, H. Matsunami, G. Pensl. Springer Berlin, Heidelberg, 2004.
 
2.    Silicon Carbide, V. 2: Power Devices and Sensors, ed. by P. Friedrichs, T. Kimoto, L. Ley, G. Pensl. Wiley-VCH Verlag GmbH, Weinheim 2011.
 
3.    J.M. Spaeth, J.R. Niklas, R.H. Bertram, Structural Analysis of Point Defects in Solids. Springer Berlin, 1992.
https://doi.org/10.1007/978-3-642-84405-8
 
4.    V.Ya. Bratus', T.T. Petrenko, S.M. Okulov, T.L. Petrenko, Positively charged carbon vacancy in three inequivalent lattice sites of 6H-SiC: combined EPR and density functional theory study. Phys. Rev. B, 71(12), 125202 (2005).
https://doi.org/10.1103/PhysRevB.71.125202
 
5.    W.F. Koehl, B.B. Buckley, F.J. Heremans, G. Calusine, D. Awschalom, Room temperature coherent control of defect spin qubit in silicon carbide. Nature, 479, p. 84-87 (2011).
https://doi.org/10.1038/nature10562
 
6.    L.A. de S. Balona, J.H.N. Loubser, ESR in irradiated silicon carbide. J. Phys. C: Solid State Phys. 3, p. 2344-2351 (1970).
https://doi.org/10.1088/0022-3719/3/11/015
 
7.    N.M. Pavlov, M.I. Iglitsyn, M.G. Kasaganova, V.N. Solomatin, Centers having spin 1 in silicon carbide irradiated with neutrons and α-particles. Sov. Phys. Semiconductors, 9, p. 845-849 (1975).
 
8.    T. Wimbauer, B.K. Meyer, A. Hofstätter, A. Scharmann, H. Overhof, Negatively charged Si vacancy in 4H SiC: A comparison between theory and experiment. Phys. Rev. B, 56, p. 7384-7388 (1997).
https://doi.org/10.1103/PhysRevB.56.7384
 
9.    H.J. von Bardeleben, J.L. Cantin, I. Vickridge, G. Battistig, Proton-implantation-induced defects in n-type 6H- and 4H-SiC: An electron paramagnetic resonance study. Phys. Rev. B, 62, p. 10126-10134 (2000).
https://doi.org/10.1103/PhysRevB.62.10126
 
10.    H.J. von Bardeleben, J.L. Cantin, L. Henry, M.F. Barthe, Vacancy defects in p-type 6H-SiC created by low-energy electron irradiation. Phys. Rev. B, 62, p. 10841-10846 (2000).
https://doi.org/10.1103/PhysRevB.62.10841
 
11.    J. Isoya, T. Umeda, N. Mizuochi, N.T. Son, E. Jan-zen, T. Ohshima, EPR identification of intrinsic defects in SiC. physica status solidi (b), 245,
 
12.    H. Itoh, A. Kawasuso, T. Ohshima et al., Intrinsic defects in cubic silicon carbide. physica status solidi (a), 162, p. 173-198 (1997).
 
13.    X.T. Trinh, K. Szasz, T. Hornos, K. Kawahara, J. Suda, T. Kimoto, A. Gali, E. Janzen, and N.T. Son, Negative-U carbon vacancy in 4H-SiC: Assessment of charge correction schemes and identification of the negative carbon vacancy at the quasicubic site. Phys. Rev. B, 88, 235209 (2013).
https://doi.org/10.1103/PhysRevB.88.235209
 
14.    V.S. Vainer, V.A. Il'in, EPR of exchanged-coupled vacancy pairs in hexagonal silicon carbide. Sov. Phys. Solid State, 23, p. 2125-2131 (1981).
 
15.    N.T. Son, E. Janzen, J. Isoya et al., Identification of a Frenkel-pair defect in electron-irradiated 3C SiC. Phys. Rev. B, 80, 125201 (2009).
https://doi.org/10.1103/PhysRevB.80.125201
 
16.    M. Bockstedte, A. Mattausch, O. Pankratov, Ab initio study of the migration of intrinsic defects in 3C-SiC. Phys. Rev. B, 68, 205201 (2003).
https://doi.org/10.1103/PhysRevB.68.205201
 
17.    M.J. Zheng, N. Swaminathan, D. Morgan, I. Szlu-farska, Energy barriers for point-defect reactions in 3C-SiC. Phys. Rev. B, 88, 054105 (2013).
https://doi.org/10.1103/PhysRevB.88.054105
 
18.    I.V. Ilyin, M.V. Muzafarova, E.N. Mokhov, P.G. Baranov, Electron paramagnetic resonance studies of multi-defect clusters in neutron irradiated silicon carbide. Semicond. Sci. Technol. 22, p. 270-278 (2007).
https://doi.org/10.1088/0268-1242/22/3/017
 
19.    V.Ya. Bratus', R.S. Melnik, S.M. Okulov, V.N. Rodionov, B.D. Shanina, M.I. Smoliy, A new spin one defect in cubic SiC. Physica B, 404, p. 4739-4741 (2009).
https://doi.org/10.1016/j.physb.2009.08.124
 
20.    V. Bratus', R. Melnik, S. Okulov, B. Shanina, V. Golub, I. Makeeva, An EPR study of defects in neutron-irradiated cubic SiC crystals. Mater. Sci. Forum, 740-742, p. 361-365 (2013).
https://doi.org/10.4028/www.scientific.net/MSF.740-742.361
 
21.    S.N. Gorin, L.M. Ivanova, Cubic silicon carbide (3C-SiC): structure and properties of single crystals grown by thermal decomposition of methyl trichlorosilane in hydrogen. physica status solidi (b), 202, p. 221-245 (1997).
 
22.    F. Maekawa, K. Ochiai, K. Shibata, Y. Kasugai, M. Wada, Y. Morimoto, H. Takeuchi, Benchmark experiment on silicon carbide with D–T neutrons and validation of nuclear data libraries. Fusion Eng. and Design, 58-59, p. 595-600 (2001).
https://doi.org/10.1016/S0920-3796(01)00514-2
 
23.    Y. Zhang, W.J. Weber, W. Jiang, A. Hallén, G. Possnert, Damage evolution and recovery on both Si and C sublattices in Al-implanted 4H–SiC studied by Rutherford backscattering spectroscopy and nuclear reaction analysis. J. Appl. Phys. 91, p. 6388 (2002).
https://doi.org/10.1063/1.1469204
 
24.    D. Guo, I. Martin-Bragado, C. He, H. Zang, P. Zhang, Modeling of long-term defect evolution in heavy-ion irradiated 3C-SiC: Mechanism for thermal annealing and influences of spatial correlation. J. Appl. Phys. 116, 204901 (2014).
https://doi.org/10.1063/1.4902145
 
25.    F. Bruneval, G. Roma, Energetics and metastability of the silicon vacancy in cubic SiC. Phys. Rev. B, 83, 144116 (2011).
https://doi.org/10.1103/PhysRevB.83.144116
 
26.    M. Bockstedte, A. Mattausch, O. Pankratov, Ab initio study of the annealing of vacancies and interstitials in cubic SiC: Vacancy–interstitial recombination and aggregation of carbon interstitials. Phys. Rev. B, 69, 235202 (2004).
https://doi.org/10.1103/PhysRevB.69.235202
 
27.    B. Bleaney, D.J.E. Ingram, The paramagnetic resonance spectra of two salts of manganese. Proc. Roy. Soc. Lond. A, 205, p. 336-356 (1951).
https://doi.org/10.1098/rspa.1951.0033
 
28.    A. Abragam, B. Bleaney, Electron Paramagnetic Resonance of Transition Ions. V. 1, M., Mir, 1972.
 
29.    T.T. Petrenko, T.L. Petrenko, V.Ya. Bratus', The carbon 〈100〉 split interstitial in SiC. J. Phys.: Condens. Matter. 14, p. 12433-12440 (2002).
https://doi.org/10.1088/0953-8984/14/47/316
 
30.    U. Gerstmann, E. Rauls, Th. Frauenheim, and H. Overhof, Formation and annealing of nitrogen-related complexes in SiC. Phys. Rev. B, 67, p. 205202 (2003).
https://doi.org/10.1103/PhysRevB.67.205202