Semiconductor Physics, Quantum Electronics & Optoelectronics. 2015. V. 18, N 4. P. 410-415.
DOI: https://doi.org/10.15407/spqeo18.04.410


References

1.    E. Hendry, T. Carpy, J. Johnston, M. Popland, R. Mikhaylovskiy, A. Lapthorn, S. Kelly, L. Bar-ron, N. Gadegaard, M. Kadodwala, Ultrasensitive detection and characterization of biomolecules using superchiral fields. Nature Nanotechnology, 5, p. 783-787 (2010).
https://doi.org/10.1038/nnano.2010.209
 
2.    M. Abb, Yu. Wang, N. Papasimakis, C.H. de Groot, M. de Groot, L. Otto, Surface-enhanced infrared spectroscopy using metal oxide plasmonic antenna arrays. Nano Letters, 14(1), p. 346-352 (2013).
https://doi.org/10.1021/nl404115g
 
3.    C. Leordean, B. Marta, A.-M. Gabudean, M. Foc-san, I. Botiz, S. Astilean, Fabrication of highly active and cost effective SERS plasmonic substrates by electrophoretic deposition of gold nanoparticles on a DVD template. Appl. Surf. Sci. 349, p. 190-195 (2015).
https://doi.org/10.1016/j.apsusc.2015.04.208
 
4.    T.I. Borodinova, V.G. Kravets, V.R. Romanyuk, Gold nanocrystals as a substrate for micro Raman spectroscopy. J. Nano- & Electron. Phys. 4(2),
 
5.    N.E. Motl, A.F. Smith, C.J. DeSantisa, S.E. Skra-balak, Engineering plasmonic metal colloids through composition and structural design. Chem. Soc. Rev. 43, p. 3823-3834 (2014).
https://doi.org/10.1039/C3CS60347D
 
6.    A.M. Lopatynskyi, V.K. Lytvyn, V.I. Nazarenko, L.J. Guo, B.D. Lucas and V.I. Chegel, Au nano-structure arrays for plasmonic applications: annealed island films versus nanoimprint lithography. Nanoscale Res. Lett. 10, p. 99 (2015).
https://doi.org/10.1186/s11671-015-0819-1
 
7.    Sh. Zeng, X. Yu, W.-Ch. Law, Ya. Zhang, R. Hu, X-Q. Dinh, H.-P. Ho, K.-T. Yong, Size dependence of Au NP-enhanced surface plasmon resonance based on differential phase measurement. Sensors and Actuators B: Chemical, 176, p. 1128-1133 (2013).
https://doi.org/10.1016/j.snb.2012.09.073
 
8.    A. Henry, J.M. Bingham, E. Ringe, L.D. Marks, G.C. Schatz, and R.P. Van Duyne, Correlated structure and optical property studies of plasmonic nanoparticles. The Journal of Physical Chemistry C, 115(19), p. 9291-9305 (2011).
https://doi.org/10.1021/jp2010309
 
9.    Y.-Ch. Chang, Sh.-M. Wang, Hs.-Ch. Chung, Ch.-B. Tseng, and Sh.-H. Chang, Observation of absorption-dominated bonding dark plasmon mode from metal–insulator–metal nanodisk arrays fabricated by nanospherical-lens lithography. ACS Nano, 6(4), p. 3390-3396 (2012).
https://doi.org/10.1021/nn300420x
 
10.    V. Juvé, M.F. Cardinal, A. Lombardi et al., Size-dependent surface plasmon resonance broadening in nonspherical nanoparticles: single gold nanorods. Nano Lett. 13(5), p. 2234-2240 (2013).
https://doi.org/10.1021/nl400777y
 
11.    A. Ahmadivand, S. Golmohammadi, Plasmon reso-nance excitation and near field manipulating in gold nanopyramid arrangements at the telecommu-nication spectrum. J. Opt. Technol. 82(2), p. 68-75 (2015).
https://doi.org/10.1364/JOT.82.000068
 
12.    A. Lopatynskyi, O. Lopatynska, L.J. Guo, V. Che-gel, Localized surface plasmon resonance biosensor: theoretical study of sensitivity – extended Mie approach. Part I. IEEE Sensors J. 11(2), p. 361-369 (2011).
https://doi.org/10.1109/JSEN.2010.2057418
 
13.    F.J. Beck, E. Verhagen, S. Mokkapati, A. Polman, K.R. Catchpole, Resonant SPP modes supported by discrete metal nanoparticles on high-index substrates. Opt. Exp. 19(S2), p. A146-A156 (2011).
https://doi.org/10.1364/OE.19.00A146
 
14.    A.M. Kern, O.J.F. Martin, Modeling near-field properties of plasmonic nanoparticles: a surface integral approach. Proc. SPIE, 7395, p. 739518 (2009).
https://doi.org/10.1117/12.825833
 
15.    T.I. Borodinova, V.I. Sapsay, V.R. Romanyuk, Gold nanocrystals growth in the mixture of primary alcohols. J. Nano- & Electron. Phys. 7(1), p. 01032(10) (2015).