Semiconductor Physics, Quantum Electronics & Optoelectronics. 2015. V. 18, N 4. P. 428-432.
DOI: https://doi.org/10.15407/spqeo18.04.428


References

1.    G. Harbeke (Ed.), Polycrystalline Semiconductors. Physical Properties and Applications. Springer, 1985.
https://doi.org/10.1007/978-3-642-82441-8
 
2.    Lawrence Kazmerski (Ed.), Polycrystalline and Amorphous Thin Films and Devices. Elsevier, 2012.
 
3.    R.L. Petriz, Theory of Photoconductivity in Semiconductor Films. Phys. Rev. 104(6), p. 1508-1515 (1956).
https://doi.org/10.1103/PhysRev.104.1508
 
4.    A.Y. Shik, Electronic Properties of Inhomogeneous semiconductors. Gordon and Breach, 1995.
 
5.    A.L. Efros and B.I. Shklovskii, Electronic Properties of Doped Semiconductors. Springer, 1992.
 
6.    A.V. Sukach, V.V. Tetyorkin and N.M. Krolevec, Mechanisms of carrier transport in CdTe polycrystalline films. Semiconductor Physics, Quantum Electronics and Opoelectronics, 13(3), p. 254-260 (2010).
 
7.    T.M. Razykov, C.S. Ferekides, D. Morel, E. Stefanakos, H.S. Ullal, H.M. Upadhyaya. Solar photovoltaic electricity: Current status and future prospects. Solar Energy, 85(8), p. 1580-1608 (2011).
https://doi.org/10.1016/j.solener.2010.12.002
 
8.    A. De Vos, J.E. Parrott, P. Baruch, P.T. Landsberg, 12th European Photovoltaic Solar Energy Conf., Amsterdam, The Netherlands, p. 1315, 1994.
 
9.    T. Aramoto, S. Kumazawa, H. Higuchi et al., 16.0% efficient thin-film CdS/CdTe solar cells. Jpn. J. Appl. Phys. 36(10), p. 6304-6305 (1997). X. Wu, High-efficiency polycrystalline CdTe thin-film solar cells. Solar Energy, 77, p. 803-814 (2004).
 
10.    M. Hage-Ali and P. Siffert, Semiconductors for room temperature nuclear detector applications in: Semiconductor and Semimetals, Vol. 43, Eds. T.E. Schlesinger, and R.B. James. Academic Press, San Diego, 1995.
 
11.    Kevin D. Dobson, Iris Visoly-Fisher, Gary Hodes and David Cahen, Stability of CdTe/CdS thin-film solar cells. Solar Energy Materials and Solar Cells, 62(3), p. 295-325 (2000).
https://doi.org/10.1016/S0927-0248(00)00014-3
 
12.    T.L. Chu, S.S. Chu, Thin film II–VI photovoltaics. Sol.-State Electron. 38(3), p. 533-549 (1995).
https://doi.org/10.1016/0038-1101(94)00203-R
 
13.    T.A. Gessert, S. Asher, S. Johnston, M. Young, P. Dippo, C. Corwine, Analysis of CdS/CdTe devices incorporating a ZnTe:Cu/Ti contact. Thin Solid Films, 515(15), p. 6103-6106 (2007).
https://doi.org/10.1016/j.tsf.2006.12.107
 
14.    B. Ghosh, S. Purakayastha, P.K. Datta, R.W. Miles, M.J. Carter, R. Hill, Formation of a stable ohmic contact to CdTe thin films through the diffusion of P from Ni-P. Semicond. Sci. Technol. 10(1), p. 71-76 (1995).
https://doi.org/10.1088/0268-1242/10/1/012
 
15.    N. Romeo, A. Bosio, R. Tedeschi, A. Romeo, V. Canevari, A highly efficient and stable CdTe/CdS thin film solar cell. Solar Energy Materials & Solar Cells, 58, p. 209-218 (1999).
https://doi.org/10.1016/S0927-0248(98)00204-9
 
16.    D.L. Bätzner, A. Romeo, M. Terheggen, M. DÖbeli, H. Zogg, A.N. Tiwari, Stability aspects in CdTe/CdS solar cells. Thin Solid Films, 451–452, p. 536-543 (2004).
https://doi.org/10.1016/j.tsf.2003.10.141
 
17.    H. Abrams, Grain size measurement by the intercept method. Metallography, 4(1), p. 59-78 (1971).
https://doi.org/10.1016/0026-0800(71)90005-X
 
18.    A.V. Sukach, V.V. Tetyorkin, A.I. Tkachuk, Heterostructure ohmic contacts to p-CdTe polycrystalline films. Semiconductor Physics, Quantum Electronics and Opoelectronics, 17(3), p. 268-271 (2014).
 
19.    R. Labusch and J. Hess, Conductivity of grain boundaries and dislocations in semiconductors, in:
https://doi.org/10.1007/978-1-4684-5709-4_2
 
20.    Mohammad A. Alim, Shengtao Li, Fuyi Liu, and Pengfei Cheng, Electrical barriers in the ZnO varistor grain boundaries. phys. status solidi (a), 203(2), p. 410-427 (2006).
 
21.    R.K. Mankarious, Hall mobility measurements in CdS films. Solid-State Electron. 7(9), p. 702-704 (1964).
https://doi.org/10.1016/0038-1101(64)90058-9
 
22.    S.A. Kolosov, Y.V. Klevkov, A.F. Plotnikov, Transport phenomena in coarse-grained polycrystals of CdTe. Semiconductors, 38(3), p. 293-297 (2004).
https://doi.org/10.1134/1.1682330
 
23.    V.V. Tetyorkin, A.V. Sukach, S.V. Stariy and V.A. Boiko, Photoluminescence studies of CdTe polycrystalline films. Semiconductor Physics, Quantum Electronics and Opoelectronics, 15(4), p. 340-344 (2012).
 
24.    D.B. Holt and B.G. Yacobi, Extended Defects in Semiconductors. Electronic Properties, Device Effects and Structures. Cambridge University Press, 2007.
https://doi.org/10.1017/CBO9780511534850
 
25. A.S. Gilmore, V. Kaydanov, T.R. Ohno, D. Grecu, and D. Rose, Impedance spectroscopy and Hall measurements on CdTe thin polycrystalline films, in: II-VI Compound Semiconductor Photovoltaic Materials, MRS Proc., 668 (2001).
https://doi.org/10.1557/proc-668-h5.10
 
26.    P. Capper (Ed.), Properties of Narrow Gap Cadmium-based Compounds. Institution of Electrical Engineering, London, 1994.
 
27.    R. Triboulet, P. Siffert, CdTe and related compounds: physics, defects, hetero- and nanostructures, crystal growth, surface and applications – Part I: Physics, CdTe-based Nanostructures, Semimagnetic Semiconductors, Defects. Elsevier, 2010.
 
28.    B.K. Meyer, P. Omling, E. Weigel, and G. Mullervogt, F-center in CdTe. Phys. Rev. B, 46(23), p. 15135-15138 (1992).
https://doi.org/10.1103/PhysRevB.46.15135
 
29.    P. Emanuelsson, P. Omling, B.K. Meyer, M. Wienecke, and M. Schenk, Identification of the cadmium vacancy in CdTe by electron-paramagnetic resonance. Phys. Rev. B, 47(23), p. 15578-15580 (1993).
https://doi.org/10.1103/PhysRevB.47.15578
 
30.    R. Soundararajan, K.G. Lynn, S. Awadallah, C. Szeles, and S.H. Wei, Study of defect levels in CdTe using thermoelectric effect spectroscopy. J. Electron. Mat. 35(6), p. 1333-1340 (2006).
https://doi.org/10.1007/s11664-006-0264-0
 
31.    A. Castaldini, A. Cavallini, B. Fraboni, P. Fernandez, and J. Piqueras, Deep energy levels in CdTe and CdZnTe. J. Appl. Phys. 83(4), p. 2121-2126 (1998).
https://doi.org/10.1063/1.366946