Semiconductor Physics, Quantum Electronics & Optoelectronics. 2015. V. 18, N 4. P. 438-442.
DOI: https://doi.org/10.15407/spqeo18.04.438


References

1.    J. Homola, Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 108(2), p. 462-493 (2008).
https://doi.org/10.1021/cr068107d
 
2.    B.A. Snopok, E.V. Kostyukevich, S.I. Lysenko et al., Optical biosensors based on the surface plasmon resonance phenomenon: optimization of the metal layer parameters. Semiconductor Physics, Quantum Electronics and Optoelectronics, 4(1), p. 56-69 (2001).
 
3.    E. Kretschmann, H. Raether, Radiative decay of non-radiative surface plasmons excited by light. Z. Naturforsch. A, 23, p. 2135-2136 (1968).
https://doi.org/10.1515/zna-1968-1247
 
4.    P. Englebienne, A. Van Hoonacker, M. Verhas, Surface plasmon resonance: principles, methods and applications in biomedical sciences. Spectroscopy, 17(2, 3), p. 255-273 (2003).
 
5.    R.S. Moirangthem, Y.-C. Chang, and P.-K. Wei, Ellipsometry study on gold-nanoparticle-coated gold thin film for biosensing application. Biomed. Opt. Exp. 2(9), p. 2569-2576 (2011).
https://doi.org/10.1364/BOE.2.002569
 
6.    W.P. Hu, S.-J. Chen, K.-T. Huang, J.H. Hsu, W.Y. Chen, G.L. Chang, and K.-A. Lai, A novel ultrahigh resolution surface plasmon resonance biosensor with an Au nanocluster-embedded dielectric film. Biosens. Bioelectron. 19(11), p. 1465-1471 (2004).
https://doi.org/10.1016/j.bios.2003.12.001
 
7.    K.M. Byun, S.J. Yoon, D. Kim, and S.J. Kim. Experimental study of sensitivity enhancement in surface plasmon resonance biosensors by use of periodic metallic nanowires. Opt. Lett. 32(13), 1902–1904 (2007).
https://doi.org/10.1364/OL.32.001902
 
8.    Nak-hyeon Kim, Munsik Choi, Jung Woo Leem et al., Improved biomolecular detection based on a plasmonic nanoporous gold film fabricated by oblique angle deposition. Opt. Exp. 23(14), p. 18777-18785 (2015).
https://doi.org/10.1364/OE.23.018777
 
9.    C.J. Alleyne, A.G. Kirk, R.C. McPhedran, N-A.P. Nicorovici and D. Maystre. Enhanced SPR sensitivity using periodic metallic structures. Opt. Exp. 15, p. 8163-8169 (2007).
https://doi.org/10.1364/OE.15.008163
 
10.    A. Arriola, A. Rodriguez, N. Perez et al., Fabrication of high quality sub-micron Au gratings over large areas with pulsed laser interference lithography for SPR sensors. Opt. Mater. Exp. 2(11), p. 1571-1579 (2012).
https://doi.org/10.1364/OME.2.001571
 
11.    M. Vala and J. Homola, Flexible method based on four-beam interference lithography for fabrication of large areas of perfectly periodic plasmonic arrays. Opt. Exp. 22(15), p. 18778 (2014).
https://doi.org/10.1364/OE.22.018778
 
12.    V. Dan'ko, I. Indutnyi, M. Min'ko, P. Shepelyavyi, Interference photolithography with the use of resists on the basis of chalcogenide glassy semiconductors. Optoelectronics, Instrumentation and Data Processing, 46(5), p. 483-490 (2010).
https://doi.org/10.3103/S8756699011050116
 
13.    B.A. Snopok, E.V. Kostyukevich, S.I. Lysenko et al., Optical biosensors based on the surface plasmon resonance phenomenon: optimization of the metal layer parameters. Semiconductor Physics, Quantum Electronics and Optoelectronics, 4(1), p. 56-69 (2001).
 
14.    N. Gridina, G. Dorozinsky, R. Khristosenko, V. Maslov, A. Samoylov, Yu. Ushenin, Yu. Shir-shov, Surface plasmon resonance biosensor. Sensors & Transducers J. 149(2), p. 60-68 (2013).
 
15.    G.V. Dorozinsky, A.I. Liptuga, V.I. Gordienko, V.P. Maslov, V.V. Pidgornyi, Diagnostics of motor oil quality by using the device based on surface plasmon resonance phenomenon. Scholars J. Eng. and Technol. (SJET), 3, p. 372-374 (2015).