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1. Introduction  

As it was noted in [1], the effects of electric, magnetic, 

electromagnetic and radiation fields on materials of 

semiconductor products lead to changes in states of 

ensembles of particles and defects. Behavior of these 

ensembles is caused by flow of random events in 

physical and chemical processes. This concept allowed 

to give mathematical description of proceeding with 

time a number of physical and chemical processes from 

the probability positions. Therefore, it is of interest to 

develop a probabilistic approach to the analysis of the 

dependence of parameters of electronic equipment 

material on the values of the parameters characterizing 

the external fields (hereinafter, in the broadest sense, we 

will call these parameters as the force ones). 

2. Statistic regularities of behavior inherent to 

material parameters under action of external fields 

Let the probability that a particle, defect or structural 

formation in material does not change its state when the 

parameter of the external field changes from 0 to f will 

be P(f). Furthermore, changes in a state, position, 

generation or annihilation of particle, defect and 

structural formation under external influences will be 

treated as a random event (or simply – event). Then the 

probability of the lack of events when changing the force 

parameter to dff   can be presented in the form 

)( dffP  . The latter probability can be considered as 

the probability of a complex event consisting in the 

absence of the event when changing the force parameter 

from 0 to f and in the range df. Let us assume that these 

events are independent. When these events are 

independent, the sought-for probability is equal to the 

product of the probabilities of the component events: 

     dfPfPdffP  . (1) 

Let  dff  is the probability of event in the range 

df . Then the probability of the opposite event is equal 

to  dff1 . 

Consequently, 

      dfffPdffP  1 ,   (2) 

and  f  will be called as the sensitivity of events to the 

parameters of external fields (hereinafter – the 

sensitivity of events). The mathematical definition of the 

latter will be given below. 
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Considering the mathematical definition of a 

derivative, we obtain 

   
 

df
df

fdP
fPdffP  .   (3) 

Substituting (3) into (2), we get 

     dffPffdP  .    (4) 

Integrating (4), we find 

 
 



f

dff

efP 0 .     (5) 

Then for the probability of event to the value of 

parameter of the external field f, we get 

 
 



f

dff

efF 01 .    (6) 

In other words,  fF  is the distribution function of 

the random variable – the force parameter before the 

event. 

As it is seen from (5) and (6), the sensitivity of 

events is determined as follows: 

 
 

 
df

fdF

fP
f

1
 ,    (7) 

where   dffdF  – density of distribution of the force 

parameter before the event (the probability density of the 

event). 

By analogy with [1], where the term of event 

intensity is used, we can write an expression for the 

sensitivity of events: 

 
 
   ffnn

fn
f






0

 ,    (8) 

where n0 is the total number of events, n(f) – number of 

events to the force parameter value f,   ffn   – 

number of events when changing the parameter of the 

external field by f  (the number of events per unit f). 

Let us define the quantities in the formula (8) by 

using an example of some physical phenomena. 

1. Generation of defects in semiconductor materials 

under the influence, for example, of laser 

irradiation. A random event – generation of a 

defect: (f) – the sensitivity of generations of 

defects to the intensity of laser irradiation f = I; n0 

– total number of generated defects; n(f) – number 

of defects generated to the value of the laser 

irradiation intensity f = I;   ffn   – number of 

the defects generated per unit of the laser 

irradiation intensity f = I. 

2. The spin-dependent reactions. A random event is a 

change in the electron state caused by a change in 

spin orientation: (f) – sensitivity of changes in 

electron states to the magnetic induction f = B; n0 – 

total number of electrons changing their state; n(f) 

– number of electrons that have changed their state 

to the magnetic induction value f = B;   ffn   – 

number of electrons changed their state by the unit 

of magnetic induction f = B. 

3. Magnetization of ferromagnetics. A random event 

is the domain wall displacement:  f  – sensitivity 

of displacements of the domain walls to the 

magnetic field strength f = H; n0 – total number of 

the displacing domain walls; n(f) – number of 

domain walls, displaced to the value of the 

magnetic field strength f = H;   ffn   – number 

of domain walls that have displaced per the unit of 

magnetic field strength f = H. 

Since, by definition     0nfnfF  , accounting 

(6), we get 

 






















f

dff

enfn 0
0 1)( .    (9) 

From (9) it follows that at f ,  fn  

asymptotically approaches the value n0. 

For f so small that   1

0

 dff

f

, expanding the 

exponent in series and limiting only by the first term of 

the expansion, we obtain 

   dffnfn

f



0

0 . (10) 

In its turn, the changes in the parameter values of 

electronic equipment materials control the changes in 

n(f) and are proportional to n(f). Considering that in the 

initial state the material parameter had a value yin, then 

during its growth with the f increase, taking (9) into 

account, we get 

 
 






















f

dff

in eyyfy 0
0 1 , (11) 

where y0 is the asymptotically attainable value 

  inyfy   when f . 

If y(f) decreases with increasing f, we obtain 

 
 






















f

dff

in eyyfy 0
0 1 , (12) 

where y0 is the asymptotically attainable value 

 fyyin   when f . 

For f so small that   1

0

 dff

f

, according to (10) 

we have 
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   dffyyfy

f

in 

0

0 , (13) 

   dffyyfy

f

in 

0

0 . (14) 

Therefore, the change in the material parameters is 

determined by the form of the  f  function that depends 

on the type of the used distribution F(f). To analyze the 

force dependences of the change of material parameters, 

as in the case of the mathematical description of the 

flowing physical and chemical processes with time [1], we 

use the distribution of Weibull–Gnedenko, the function of 

which takes the form [2]: 

 

m

f

f

efF

















1 , (15) 

where f  and m are the distribution parameters. 

The expression for  f , in accordance with (7) 

and (15), is as follows: 

 
 

1


 m

m
f

f

m
f . (16) 

In future, we will call m as the form factor of 

distribution of a random variable – force parameter 

before the event, and we mean that f  (that is the scale 

parameter) is the constant of the force parameter. When 
 ff , the probability of a random event is 11  e , 

that is, about 63% of the events. When m = 1, the 

sensitivity of the events is a constant, and when 1m  it 

changes with increasing the parameter of the external 

field by a power law. 

We note three different types of F(f) behavior over 

the whole range f. When 0 < m < 1, the curve F(f) is 

always convex and tends asymptotically to unity. At 

m > 1, the curve in the initial section of change in f is 

concave, and then after passing through an inflection 

point it becomes convex, tending to the asymptote. 

When m = 1, the Weibull-Gnedenko distribution 

transforms into the exponential law that is characterized 

by a linear behavior of F(f) in the initial section of 

change in f. 

The Weibull–Gnedenko distribution has the 

following important feature [3]. At m > 1, when 

3 < m < 4, the Weibull–Gnedenko distribution reduces to 

the normal one. The function of the Weibull–Gnedenko 

distribution is symmetrical at the point F(f) = 0.5 at 

m = 3.26, that is   1
2ln1


 , and the inflection point 

changes with m remarkably slower. When 0 < m < 0.7, 

the Weibull–Gnedenko distribution is reduced to the 

normal logarithmic one. Finally, as it was already noted, 

when m = 1 the Weibull–Gnedenko distribution 

transforms into the exponential one. 

Replacing  f  in the formulas (9) and (10) to (16) 

and integrating, we obtain 

 


































m

f

f

enfn 10 , (17) 

 
m

f

f
nfn 












0 . (18) 

Accordingly, substituting (16) into (11) and (12), 

we will get the following force dependences of changes 

in the material parameters: 

 


































m

f

f

in eyyfy 10 , (19) 

 


































m

f

f

in eyyfy 10 . (20) 

At the values of force parameters so small that 

  1 m
ff , as a result of expansion of the exponent 

in series and limitation by the first term of the 

expansion, these dependences can be represented as: 

 
m

in
f

f
yyfy 












0 , (21) 

 
m

in
f

f
yyfy 












0 . (22) 

Thus, in the case of using the Weibull–Gnedenko 

distribution, the change in material parameters for small 

f is described by the power functions. On the other hand, 

taking into account that in practice for small f, the 

changes in the respective parameters are well 

approximated by power laws, it once again confirms the 

correctness of using the Weibull–Gnedenko distribution 

for mathematical analysis of random events in the 

materials of electronic equipment under the influence of 

external fields. 

In the presence of the sensitivity threshold f0 to the 

action of external fields, the expressions (17)-(22) can be 

rearranged via replacing f by 0ff  . 

3. Some applications of the obtained results 

The relation (19) well approximates the dependence of 

the relative conductivity of InSb on the laser irradiation 

intensity, which is presented in [4] (Fig. 1, curve 1). This 

dependence is rectified in the Weibull-Gnedenko 

coordinates:  

   
 

1

0

1lnln

















II

IIII
z in and  

th
IIx ln  

(Fig. 1, curve 2), in this case m  3.2, that is the sensiti-

vity of generations of defects is a power function of the 

laser irradiation intensity. 
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The formula (19) with the form factor m = 1 

describes given in [5, 6] regularities of the behavior of 

the microhardness of crystals NaCl with paramagnetic 

impurities Ca and the photocurrent in fullerene and 

tetracene crystals depending on magnetic induction 

caused by spin-dependent reactions. In these cases, there 

is a constant sensitivity of changes in the states of 

electrons in the defects to the magnetic induction. 

The obtained results can be recommended to use 

for describing the magnetization curve of ferromagnetics 

with the polydomain structure. The magnetization of 

such ferromagnetics is caused by the process of 

displacements of domain boundaries (domain walls) and 

growth of volumes of those domains, in which the 

magnetic moment vector forms the smallest angle with 

the magnetic field direction [7]. With increasing 

magnetic field strength, the state of material reaches the 

technical saturation. If we continue to strengthen the 

field, then there observed is the paraprocess comprising 

weak linear increase of magnetization [7]. 

Thus, the dependence B on H can be expressed as 

B(H) = B1(H) + B2(H): where B1(H) describes the process 

related with motion of the domain walls, which obeys the 

laws of probability and is described by the expression (19) 

with f = H, y(f) = B(H), yin = 0 (previously demagnetized 

material). In its turn B2(H) = 0H is the paraprocess 

component [8], here μ0 is the magnetic constant, μ is the 

magnetic permeability for the paraprocess. 

In particular, the curve of magnetization of gray 

cast iron is presented in the work [9]. The analysis 

shows that it is approximated by the expression (19) 

with m  1.7. It indicates that the sensitivity to 

displacements of the domain walls is a power function of 

the magnetic field. 

Similarly, one can analyze the dependences of 

polarizability of ferroelectrics with a polydomain 

structure on the electric field. Polarizability of 

ferroelectrics P(E) = P1(E) + P2(E) consists of the 

nonlinear orientational polarizability P1(E)  caused by 

the process of repolarization of domains possessing a 

statistical character [7, 10]. 
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Fig. 1. Relative change of the InSb sample conductance as  

a function of the laser irradiation intensity. 

It can be represented in the form (19) with f = E, 

y(f) = P(E), yin = 0 as well as the contribution of the 

mechanisms of elastic and relaxation polarization P2(E) = 

0E [10] (0 is the dielectric constant of vacuum,  is the 

dielectric susceptibility by induced field of elastic and 

relaxation polarization) causing a weak linear increase in 

the segment of domain polarization saturation. 

4. Conclusions 

Behavior of material parameters of electronic equipment 

under the influence of external fields obeys the laws of 

statistics. Analytical expressions establishing the relation 

between the parameters of materials and external fields 

are the distribution functions of the corresponding 

random variables. The use of the Weibull–Gnedenko 

distribution for this purpose has been substantiated. A 

number of applications of the obtained results has been 

demonstrated. 
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