Semiconductor Physics, Quantum Electronics & Optoelectronics. 2016. V. 19, N4. P. 334-342.
DOI: https://doi.org/10.15407/spqeo19.04.334

References

1.    M.A. Green, The path to 25% silicon solar cell efficiency: History of silicon cell evolution . Prog. Photovolt: Res. Appl. 17, p. 183-189 (2009).
https://doi.org/10.1002/pip.892
 
2.    K. Masuko, M. Shigematsu, T. Hashiguchi et al., Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cells . IEEE J. Photovolt. 4(6), p. 1433-1435 (2014).
https://doi.org/10.1109/JPHOTOV.2014.2352151
 
4.    E. Yablonovitch and T. Gmitter, Auger recombination in silicon at low carrier densities . Appl. Phys. Lett. 49(10), p. 587-589(1986).
https://doi.org/10.1063/1.97049
 
5.    A. Richter, S. Glunz, F. Werner, J. Schmidt et al., Improved quantitative description of Auger recombination in crystalline silicon . Phys. Rev. 86, 165202 (2012).
https://doi.org/10.1103/PhysRevB.86.165202
 
6.    J.G. Fossum, Computer-aided numerical analysis of silicon solar cells . Solid State Electron. 19(4), p. 269-277 (1976).
https://doi.org/10.1016/0038-1101(76)90022-8
 
7.    D. Kendall, Proc. Conference for Physics and Application of Lithium Diffused Silicon, NASA Space Flight Center, Goddard, FL (1969).
 
8.    K. Gra, H. Pieper and G. Goldbach, Semiconductor Silicon. 1973.
 
9.    R. Häcker, A. Hangleiter, Intrinsic upper limits of the carrier lifetime in silicon . J. Appl. Phys. 75(11), p.7570-7572 (1994).
https://doi.org/10.1063/1.356634
 
10.    A.V. Sachenko, A.P. Gorban, V.P. Kostylyov, I.O. Sokolovsky, The radiative recombination coefficient and the internal quantum yield of electroluminescence in silicon . Semiconductors, 40(8), p. 884-889 (2006).
https://doi.org/10.1134/S1063782606080045
 
11.    J.D. Beck, R. Conradt, Auger-recombination in Si . Solid State Communs. 13, p. 93-95 (1973).
https://doi.org/10.1016/0038-1098(73)90075-6
 
12.    L. Passari, E. Susi, Recombination mechanisms and doping density in silicon . J. Appl. Phys. 54, p. 3935-3937 (1983).
https://doi.org/10.1063/1.332568
 
13.    A.V. Sachenko, A.P. Gorban, V.P. Kostylyov, Exciton-enhanced recombination in silicon at high concentrations of charge carriers . Semiconductor Physics, Quantum Electronics & Optoelectronics, 3, p. 5-10 (2000).
 
14.    A. Hangleiter, Nonradiative recombination via deep impurity levels in silicon: Experiment . Phys. Rev. B, 35(17), p. 9149-9160 (1987);
https://doi.org/10.1103/PhysRevB.35.9149
 
A. Hangleiter, Nonradiative recombination via deep impurity levels in semiconductors: The exciton Auger mechanism . Phys. Rev. B, 37(5), p. 2594-2604 (1988).
https://doi.org/10.1103/PhysRevB.37.2594
 
15.    T. Trupke, M.A. Green, P. Wurfel, P.P. Altermatt et al., Temperature dependence of the radiative recombination coefficient of intrinsic crystalline silicon . J. Appl. Phys. 94(8), p. 4930-4937 (2003).
https://doi.org/10.1063/1.1610231
 
16.    A.V. Sachenko, A.I. Shkrebtii, R.M. Korkishko, V.P. Kostylyov et al., Features of photoconversion in highly efficient silicon solar cells . Semiconductors, 49(2), p. 264-269 (2015).
https://doi.org/10.1134/S1063782615020189
 
17.    A.P. Gorban', A.V. Sachenko, V.P. Kostylyov, N.A. Prima, Effect of excitons on photoconversion efficiency in the p+-n-n+- and n+-p-p+-structures based on single-crystalline silicon . Semiconductor Physics, Quantum Electronics & Optoelectronics, 3(3) p. 322-329 (2000).
 
18.    R. Gogolin, R. Ferre, M. Turcu, N.-P. Harder, Silicon heterojunction solar cells: Influence of H2-dilution on cell performance . Solar Energy Materials & Solar Cells, 106, p. 47-50 (2012).
https://doi.org/10.1016/j.solmat.2012.06.001
 
19.    A.V. Sachenko, V.P. Kostylyov, R.M. Korkishko, M.R. Kulish, V.M. Vlasiuk, D.V. Khomenko, Peculiarities of the temperature dependences of silicon solar cells illuminated with light simulator . Semiconductor Physics, Quantum Electronics & Optoelectronics, 18(3), p. 259-266 (2015).
https://doi.org/10.15407/spqeo18.03.259
 
20.    A.V. Sachenko, N.A. Prima, A.P. Gorban, A.A. Serba, Effect of excitons on the upper limit of conversion efficiency in silicon solar cells . Proc. 17-th European Photovoltaic Solar Energy Conference, Munich, Germany, 2001, p. 230-233.
 
21.    A.V. Sachenko, A.P. Gorban, V.P. Kostylyov, I.O. Sokolovskyi, The square law recombination in silicon and its effect as far as the volume life time is concerned . Semiconductors, 41(3), p. 290-294 (2007).
 
22.    D.E. Kane, R.M. Swanson, The effect of excitons on apparent band gap narrowing and transport in semiconductors . J. Appl. Phys. 73(3), p. 1193-1197 (1993).
https://doi.org/10.1063/1.353285
 
23.    R. Corkish, S.-P. Chan, M.A. Green, Excitons in silicon diodes and solar cells: A three-particle theory . J. Appl. Phys. 79(1), p. 195-203 (1993).
https://doi.org/10.1063/1.360931
 
24.    M.A. Green, Excitons in silicon solar cells: room temperature distributions and flows . Proc. Photovoltaic Solar Energy Conversion Conference, Vienna, 1998, p. 74-76.