Semiconductor
Physics, Quantum Electronics & Optoelectronics. 2016. V. 19,
N4. P. 343-351. https://doi.org/10.1016/j.pmatsci.2009.10.001 2. V.S. Khomchenko, N.N. Roshchina, L.V. Zavyalova, V.V. Strelchuk, G.S. Svechnikov, N.P. Tatyanenko, V.L. Gromashevskii, O.S. Litvin, E.A. Avramenko, B.A. Snopok, Structure and the emission and piezoelectric properties of MOCVD-grown ZnS, ZnS-ZnO, and ZnO films . Techn. Phys. 59(1), p. 93-101 (2014). https://doi.org/10.1134/S1063784214010071 3. D. Naumenko, V. Snitka, B. Snopok, S. Arpiainen, H. Lipsanen, Graphene-enhanced Raman imaging of TiO2 nanoparticles . Nanotechnology, 23, 465703 (2012). https://doi.org/10.1088/0957-4484/23/46/465703 4. A. Bussmann-Holder, J. Köhler, R.K. Kremer, and J.M. Law, Analogies of structural instabilities in EuTiO3 and SrTiO3 . Phys. Rev. B, 83, 212102 (2011). https://doi.org/10.1103/PhysRevB.83.212102 5. Z. Guguchia, H. Keller, A. Bussmann-Holder, J. Köhler, R.K. Kremer, The low-temperature magnetic phase diagram of EuxSr1−xTiO3 . Europ. Phys. J. B, 86, p. 409 (2013). https://doi.org/10.1140/epjb/e2013-40632-y 6. J Köhler, R Dinnebier, A Bussmann-Holder, Structural instability of EuTiO3 from X-ray powder diffraction, in: Phase Transitions. Taylor & Francis, 2012. 7. P.G. Reuvekamp, R.K. Kremer, J. Köhler et al., Spin-lattice coupling induced crossover from negative to positive magnetostriction in EuTiO3 . Phys. Rev. B, 90, 094420 (2014). https://doi.org/10.1103/PhysRevB.90.094420 8. P.G. Reuvekamp, R.K. Kremer, J. Köhler, and A. Bussmann-Holder, Evidence for the first-order nature of the structural instability in EuTiO3 from thermal expansion measurements . Phys. Rev. B, 90, 104105 (2014). https://doi.org/10.1103/PhysRevB.90.104105 9. O.M. Marchylo, Y. Nakanishi, H. Kominami, K. Hara, L.V. Zavyalova, V.V. Laguta, S.V. Svechnikov, B.A. Snopok, New high-efficiency red-emitting phosphor produced by the sol–gel method . Theoretical and Experimental Chemistry, 50(1), p. 29-34 (2014). https://doi.org/10.1007/s11237-014-9344-z 10. A.N. Morozovska, M.D. Glinchuk, R.K. Behera, B.Y. Zaylichniy, Ch.S. Deo, E.A. Eliseev, Ferroelectricity and ferromagnetism in EuTiO3 nanowires . Phys. Rev. B, 84, 205403 (2011). https://doi.org/10.1103/PhysRevB.84.205403 11. E.A. Eliseev, M.D. Glinchuk, V.V. Khist, Chan-Woo Lee, Ch.S. Deo, R.K. Behera, and A.N. Morozovska, New multiferroics based on EuxSr1-xTiO3 nanotubes and nanowires . J. Appl. Phys. 113, 024107 (2013). https://doi.org/10.1063/1.4774208 12. A.N. Morozovska, E.A. Eliseev, M.D. Glinchuk, Long-Qing Chen, V. Gopalan, Interfacial polarization and pyroelectricity in antiferrodistortive structures induced by a flexoelectric effect and rotostriction . Phys. Rev. B, 85, 094107 (2012). https://doi.org/10.1103/PhysRevB.85.094107 13. A.N. Morozovska, E.A. Eliseev, S.V. Kalinin, Long-Qing Chen and V. Gopalan, Surface polar states and pyroelectricity in ferroelastics induced by flexo-roto field . Appl. Phys. Lett. 100, 142902 (2012). https://doi.org/10.1063/1.3701152 14. A.N. Morozovska, E.A. Eliseev, S.L. Bravina, A.Y. Borisevich, and S.V. Kalinin, Roto-flexoelectric coupling impact on the phase diagrams and pyroelectricity of thin SrTiO3 films . J. Appl. Phys. 112, 064111 (2012). https://doi.org/10.1063/1.4752397 15. A.N. Morozovska, Yijia Gu, V.V. Khist, M.D. Glinchuk, Long-Qing Chen, V. Gopalan, and E.A. Eliseev, Low-symmetry monoclinic phase stabilized by oxygen octahedra rotations in thin strained EuxSr1-xTiO3 films . Phys. Rev. B, 87, 134102 (2013). https://doi.org/10.1103/PhysRevB.87.134102 16. Koen Binnemans, Interpretation of europium(III) spectra . Coordination Chemistry Reviews, 295, February 2015. https://doi.org/10.1016/j.ccr.2015.02.015 17. C.R. Ronda, Phosphors for lamps and displays: an applicational view . J. Alloys and Compounds, 225, p. 534-538 (1995). https://doi.org/10.1016/0925-8388(94)07065-2 18. A. Kale, N. Shepherd, W. Glass, D. DeVito, M. Davidson, P.H. Holloway, Infrared emission from zinc sulfide: Rare-earth doped thin films . J. Appl. Phys. 94(5), p. 3147-3152 (2003). https://doi.org/10.1063/1.1597956 19. R.M. Macfarlane, High-resolution laser spectroscopy of rare-earth doped insulators: a personal perspective . J. Lumin. 100, p. 1-20 (2003). https://doi.org/10.1016/S0022-2313(02)00450-7 20. Z.R. Hong, C.S. Lee, S.T. Lee, W.L. Li, S.Y. Liu, Efficient red electroluminescence from organic devices using dye-doped rare earth complexes . J. Appl. Phys. Lett. 82(14), p. 2218-2220 (2003). https://doi.org/10.1063/1.1564631 21. H. Yamamoto, Y. Suda, Luminescence of rare-earth-activated Ga-containing oxides by low-energy electron excitation . J. Soc. Inf. Disp. 6(3), p. 2783-2785 (1998). https://doi.org/10.1889/1.1985230 22. C.R. García, J. Oliva, M.T. Romero, R. Ochoa-Valiente, and L.A. Garcia Trujillo, Effect of Eu3+ concentration on the luminescent properties of SrTiO3 phosphors prepared by pressure-assisted combustion synthesis . Adv. in Mater. Sci. and Eng. 2015, Article ID 291230, 7 p. (2015). 23. Limin Dong, Jian Li, Qin Li, Lianwei Shan, and Zhidong Han, Luminescence performance of yellow phosphor SrxBa1−xTiO3:Eu3+, Gd3+ for blue chip . J. Nanomaterials, 2015, Article ID 405846, 6 p. (2015). 24. S.P. Feofilov, A.A. Kaplyanskii, A.B. Kulinkin, and R.I. Zakharchenya, Nanocrystalline SrTiO3:Eu3+ and BaTiO3:Eu3+: Fluorescence spectroscopy and optical studies of structural phase transitions . Phys. Status Solidi (c), 4, p. 705-710 (2007). https://doi.org/10.1002/pssc.200673787 25. R.F. Gonçalves, Rosana de Fátima et al., Crystal growth and photoluminescence of europium-doped strontium titanate prepared by a microwave hydrothermal method . Ceramics Intern. 41(3), p. 3549-3554 (2015). https://doi.org/10.1016/j.ceramint.2014.11.018 26. I.K. Battisha, A. Speghini, S. Polizzi, F. Agnoli, M. Bettinelli, Molten chloride synthesis, structural characterisation and luminescence spectroscopy of ultrafine Eu3+-doped BaTiO3 and SrTiO3 . Mater. Lett. 57, Issue 1, p. 183-187 (2002). https://doi.org/10.1016/S0167-577X(02)00727-9 27. O.M. Marchylo, L.V. Zavyalova, Y. Nakanishi, H. Kominami, A.E. Belyaev, G.S. Svechnikov, Investigation of luminescent properties inherent to SrTiO3:Pr3+ luminophor with Al impurity . Semiconductor Physics, Quantum Electronics and Optoelectronics, 14(4), p. 461-464 (2011). https://doi.org/10.15407/spqeo14.04.461 28. O.M. Marchylo, Y. Nakanishi, H. Kominami, K. Hara, L.V. Zavyalova, S.V. Svechnikov, B.A. Snopok, Effect of aluminum on the microstructure and photoluminescence of SrTiO3:Pr3+ phosphors prepared by a sol-gel method . Theoretical and Experimental Chemistry, 49(3), p. 147-152 (2013). https://doi.org/10.1007/s11237-013-9309-7 29. O.M. Marchylo, Y. Nakanishi, H. Kominami, K. Hara, L.V. Zavyalova, S.V. Svechnikov, B.A. Snopok, Optical converters based on ceramic crystalline phosphor SrTiO3:Pr3+, Al for silicon sensors of ultraviolet radiation . Theoretical and Experimental Chemistry, 48(3), p. 133-138 (2012). 30. A.P. Tomsia and A.M. Glaeser (Ed.), Ceramic Microstructures: Control at the Atomic Level. Plenum Press, 1998. 31. I.S. Golovina, V.E. Rodionov, S.A. Khainakov, V.V. Litvinenko, Structure and EPR of low-dimensional powders KNb1-xFexO3 . Visnyk Kharkivs'koho Natsional'noho universitetu. Ser. Fizychna "Yadra, chastynky, polia", 1059, N3(59), p. 96-101 (2013), in Russian. 32. W.S.D. Folly, V.R. Caffarena, R.L. Sommer, J.L. Capitaneo, A.P. Guimaraes, Magnetic properties of Fe90Zr7B3 ribbons studied by FMR and magnetization . J. Magn. and Magn. Mater. 320, p. e358-e361 (2008). https://doi.org/10.1016/j.jmmm.2008.02.070 33. M. Rivoire, G. Suran, Magnetization of thin films with in-plane uniaxial anisotropy studied by microwave absorption . J. Appl. Phys. 78, p. 1899-1905 (1995). https://doi.org/10.1063/1.360226 34. I.S. Golovina, S.P. Kolesnik, V. Bryksa et al., Defect driven ferroelectricity and magnetism in nanocrystalline KTaO3 . Physica B: Condensed Matter, 407, p. 614-623 (2012). https://doi.org/10.1016/j.physb.2011.11.044 35. I.S. Golovina, B.D. Shanina, S.P. Kolesnik et al., Magnetic defects in KTaO3 and KTaO3:Fe nanopowders . Phys. Status Solidi (b), 249(11), p. 2263-2271 (2012). https://doi.org/10.1002/pssb.201248157 36. M.E. Zvanut, S. Jeddy, E. Towett, G.M. Janowski, C. Brooks, and D. Schlom, An annealing study of an oxygen vacancy related defect in SrTiO3 substrates . J. Appl. Phys. 104, 064122 (2008). https://doi.org/10.1063/1.2986244 37. I. Bykov, M. Makarova, V. Trepakov, A. Dejneka, L. Yurchenko, A. Jager, and L. Jastrabik, Intrinsic and impurity defects in chromium-doped SrTiO3 nanopowders: EPR and NMR study . Phys. Status Solidi (b), p. 1-4 (2013). 38. J. Soria, J. Sanz, I. Sobrados, J.M. Coronado, F. Fresno, and M.D. Hernández-Alonso, Magnetic resonance study of the defects influence on the surface characteristics of nanosize anatase . Catal. Today, 129, p. 240 (2007). https://doi.org/10.1016/j.cattod.2007.08.001 39. Photoluminescent properties of Sr2SiO4:Eu3+ and Sr2SiO4:Eu2+ phosphors prepared by solid-state reaction method . J. Rare Earths, 27, No. 2, p. 323 (2009). https://doi.org/10.1016/S1002-0721(08)60243-4 40. S.B. Meshkova, V.P. Antonovich, S.A. Tarasenko et al., The determination of Eu2+ and Eu3+ contents in fluorides EuF3–x . Metody ta ob'ekty khimichnoho analizu, 4(2), p. 153-158 (2009), in Ukrainian. 41. Fumito Fujishiro, Tomonori Arakawa, Takuya Hashimoto, Substitution site and photoluminescence spectra of Eu3+-substituted SrTiO3 prepared by Pechini method . Mater. Lett. 65, Issue 12, p. 1819-1821 (2011). http:.dx.doi.org/10.1016/j.matlet.2011.03.078. 42. R.F. Gonçalves, A.P. Moura, M.J. Godinho, E. Longo, M.A.C. Machado, D.A. de Castro, M. Siu Li, A.P.A. Marques, Crystal growth and 43. W.M. Yen, S. Shionoya and H. Yamamoto, Phosphor Handbook. CRC press, Boca Raton, 2006, p. 206. https://doi.org/10.1201/9781420005233 44. C. Jiang, L. Fang, M. Shen, F. Zheng, and X. Wu, Effects of Eu substituting positions and concentrations on luminescent, dielectric, and magnetic properties of SrTiO3 ceramics . Appl. Phys. Lett. 94, Article ID, 071110 (2009). 45. S. Okamoto, H. Kobayashi and H. Yamamoto, Effects of Al addition on photoluminescence properties in rare-earth ion-doped SrTiO3 . J. Electrochem. Soc. 147(6), p. 2389-2393 (2000). https://doi.org/10.1149/1.1393542 |