Semiconductor Physics, Quantum Electronics & Optoelectronics. 2016. V. 19, N4. P. 358-365.
DOI: https://doi.org/10.15407/spqeo19.04.358

References

1.    K.K. Jain, Future of nanomedicine: impact on healthcare & society . Nanomedicine, 10(21), p. 3199-3202 (2015).
https://doi.org/10.2217/nnm.15.153
 
2.    M.S. Singh and D. Peer, RNA nanomedicines: the next generation drugs? . Curr. Opin. Biotechnol. 39, p. 28-34 (2016).
https://doi.org/10.1016/j.copbio.2015.12.011
 
3.    C.M. Castro, H. Im, H. Lee and R. Weissleder, Nanotechnology approaches for intraprocedural molecular diagnostics, Chap. 12, in: Imaging and Visualization in The Modern Operating Room, Eds. Y. Fong, P.C. Giulianotti, J. Lewis, B.G. Koerkamp, T. Reiner. Springer, New York, 2015, p. 157-166.
https://doi.org/10.1007/978-1-4939-2326-7_12
 
4.    I. Khan, M. Khan, M.N. Umar and D.H. Oh, Nanobiotechnology and its applications in drug delivery system: a review . IET Nanobiotechnol. 9(6), p. 396-400 (2015).
https://doi.org/10.1049/iet-nbt.2014.0062
 
5.    N. Habibi, N. Kamaly, A. Memic and H. Shafiee, Self-assembled peptide-based nanostructures: smart nanomaterials toward targeted drug delivery . Nano Today, 11(1), p. 41-60 (2016).
https://doi.org/10.1016/j.nantod.2016.02.004
 
6.    K. Yang, L. Feng and Z. Liu, The advancing uses of nano-graphene in drug delivery . Expert Opin. Drug Deliv. 12(4), p. 601-612 (2015).
https://doi.org/10.1517/17425247.2015.978760
 
7.    H.A. Santos, L.M. Bimbo, L. Peltonen and J. Hirvonen, Inorganic nanoparticles in targeted drug delivery and imaging, Chap. 18, in: Targeted Drug Delivery: Concepts and Design. Eds. P.V. Devarajan, S. Jain. Springer Intern. Publ. 2015, p. 571-613.
https://doi.org/10.1007/978-3-319-11355-5_18
 
8.    H. Daraee, A. Eatemadi, E. Abbasi, S. Fekri Aval, M. Kouhi and A. Akbarzadeh, Application of gold nanoparticles in biomedical and drug delivery . Artif. Cells Nanomed. Biotechnol. 44(1), p. 410-422 (2016).
https://doi.org/10.3109/21691401.2014.955107
 
9.    G.F. Paciotti, J. Zhao, S. Cao, P.J. Brodie, L. Tamarkin, M. Huhta, L.D. Myer, J. Friedman and D.G.I. Kingston, Synthesis and evaluation of paclitaxel-loaded gold nanoparticles for tumor-targeted drug delivery . Bioconjugate Chem. Article ASAP (2016).
 
10.    M. Hembury, C. Chiappini, S. Bertazzo et al., Gold–silica quantum rattles for multimodal imaging and therapy . Proc. Natl. Acad. Sci. USA, 112(7), p. 1959-1964 (2015).
https://doi.org/10.1073/pnas.1419622112
 
11.    B. Duncan, C. Kim and V.M. Rotello, Gold nanoparticle platforms as drug and biomacromolecule delivery systems . J. Control. Release, 148(1), p. 122-127 (2010).
https://doi.org/10.1016/j.jconrel.2010.06.004
 
12.    S. Rana, A. Bajaj, R. Mout and V.M. Rotello, Monolayer coated gold nanoparticles for delivery applications . Adv. Drug Deliv. Rev. 64(2), p. 200-216 (2012).
https://doi.org/10.1016/j.addr.2011.08.006
 
13.    X.Q. Zhao, T.X. Wang, W. Liu, C.D. Wang, D. Wang, T. Shang, L.H. Shen and L. Ren, Multifunctional Au@IPN-pNIPAAm nanogels for cancer cell imaging and combined chemo-photothermal treatment . J. Mater. Chem. 21(20), p. 7240-7247 (2011).
https://doi.org/10.1039/c1jm10277j
 
14.    T. Kawano, Y. Niidome, T. Mori, Y. Katayama and T. Niidome, PNIPAM gel-coated gold nanorods for targeted delivery responding to a near-infrared laser . Bioconjugate Chem. 20(2), p. 209-212 (2009).
https://doi.org/10.1021/bc800480k
 
15.    A.M. Elliott, R.J. Stafford, J. Schwartz, J. Wang, A.M. Shetty, C. Bourgoyne, P. O'Neal and J.D. Hazle, Laser-induced thermal response and characterization of nanoparticles for cancer treatment using magnetic resonance thermal imaging . Med. Phys. 34(7), p. 3102-3108 (2007).
https://doi.org/10.1118/1.2733801
 
16.    J.M. Stern, J. Stanfield, W. Kabbani, J.T. Hsieh and J.A. Cadeddu, Selective prostate cancer thermal ablation with laser activated gold nanoshells . J. Urol. 179(2), p. 748-753 (2008).
https://doi.org/10.1016/j.juro.2007.09.018
 
17.    I.H. El-Sayed, X. Huang and M.A. El-Sayed, Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles . Cancer Lett. 239(1), p. 129-135 (2006).
https://doi.org/10.1016/j.canlet.2005.07.035
 
18.    Z. Liang, X. Li, Y. Xie and S. Liu, 'Smart' gold nanoshells for combined cancer chemotherapy and hyperthermia . Biomed. Mater. 9(2), 025012 (2014).
https://doi.org/10.1088/1748-6041/9/2/025012
 
19.    V. Voliani, G. Signore, R. Nifosí, F. Ricci, S. Luin and F. Beltram, Smart delivery and controlled drug release with gold nanoparticles: new frontiers in nanomedicine . Recent Pat. Nanomed. 2(1), p. 34-44 (2012).
https://doi.org/10.2174/1877912311202010034
 
20.    A.M. Smith, M.C. Mancini and S. Nie, Second window for in vivo imaging . Nat. Nanotechnol. 4(11), p. 710-711 (2009).
https://doi.org/10.1038/nnano.2009.326
 
22.    H.N. Xie, I.A. Larmour, Y.C. Chen, A.W. Wark, V. Tileli, D.W. McComb, K. Faulds and D. Graham, Synthesis and NIR optical properties of hollow gold nanospheres with LSPR greater than one micrometer . Nanoscale, 5(2), p. 765-771 (2013).
https://doi.org/10.1039/C2NR33187J
 
23.    N. Halas, Playing with plasmons: tuning the optical resonant properties of metallic nanoshells . MRS Bull. 30(5), p. 362-367 (2005).
https://doi.org/10.1557/mrs2005.99
 
24.    A.M. Alkilany, L.B. Thompson, S.P. Boulos, P.N. Sisco and C.J. Murphy, Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions . Adv. Drug Deliv. Rev. 64(2), p. 190-199 (2012).
https://doi.org/10.1016/j.addr.2011.03.005
 
25.    S.E. Skrabalak, L. Au, X. Li and Y. Xia, Facile synthesis of Ag nanocubes and Au nanocages . Nat. Protoc. 2(9), p. 2182-2190 (2007).
https://doi.org/10.1038/nprot.2007.326
 
26.    Y. Jin and X. Gao, Spectrally tunable leakage-free gold nanocontainers . J. Am. Chem. Soc. 131(49), p. 17774-17776 (2009).
https://doi.org/10.1021/ja9076765
 
27.    A.M. Lopatynskyi, O.G. Lopatynska, L.J. Guo and V.I. Chegel, Localized surface plasmon resonance biosensor – Part I: theoretical study of sensitivity – extended Mie approach . IEEE Sens. J. 11(2), p. 361-369 (2011).
https://doi.org/10.1109/JSEN.2010.2057418
 
28.    W. Lv, P.E. Phelan, R. Swaminathan, T.P. Otanicar and R.A. Taylor, Multifunctional core-shell nanoparticle suspensions for efficient absorption . J. Sol. Energy Eng. 135(2), 021004 (2013).
https://doi.org/10.1115/1.4007845
 
29.    P.B. Johnson and R.W. Christy, Optical constants of the noble metals . Phys. Rev. B, 6(12), p. 4370-4379 (1972).
https://doi.org/10.1103/PhysRevB.6.4370
 
30.    L.I. Berger, Fermi energy and related properties of metals, in: Handbook of Chemistry and Physics, 84-th ed. Ed. R.D. Lide. CRC Press, Boca Raton, FL, 2004, p. 12-232–12-233.
 
31.    A.I. Gusev and A.A. Rempel, Nanocrystalline Materials. Nauka, Moscow, Russian Federation, 2001 (in Russian).
 
32.    U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer Series in Materials Science, vol. 25). Springer, Berlin, Germany, 1995.
 
33.    N.L. Dmitruk, A.V. Goncharenko and E.F. Venger, Optics of Small Particles and Composite Media. Naukova dumka, Kyiv, 2009 (in Ukrainian).
 
34.    C.G. Granqvist and O. Hunderi, Optical absorption of ultrafine metal spheres with dielectric cores . Z. Physik, 30(1), p. 47-51 (1978).
https://doi.org/10.1007/bf01323667
 
35.    N.G. Bastús, J. Comenge and V. Puntes, Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening . Langmuir, 27(17), p. 11098-11105 (2011).
https://doi.org/10.1021/la201938u
 
36.    L.R. Hirsch, A.M. Gobin, A.R. Lowery, F. Tam, R.A. Drezek, N.J. Halas and J.L. West, Metal nanoshells . Ann. Biomed. Eng. 34(1), p. 15-22 (2006).
https://doi.org/10.1007/s10439-005-9001-8
 
37.    S.J. Oldenburg, R.D. Averitt, S.L. Westcott and N.J. Halas, Nanoengineering of optical resonances . Chem. Phys. Lett. 288(2-4), p. 243-247 (1998).
https://doi.org/10.1016/S0009-2614(98)00277-2
 
38.    J.Z. Zhang, Biomedical applications of shape-controlled plasmonic nanostructures: a case study of hollow gold nanospheres for photothermal ablation therapy of cancer . J. Phys. Chem. Lett. 1(4), p. 686-695 (2010).
https://doi.org/10.1021/jz900366c
 
39.    Y. Sun, B.T. Mayers and Y. Xia, Template-engaged replacement reaction: a one-step approach to the large-scale synthesis of metal nanostructures with hollow interiors . Nano Lett. 2(5), p. 481-485 (2002).
https://doi.org/10.1021/nl025531v
 
40.    E. Hao, S. Li, R.C. Bailey, S. Zou, G.C. Schatz and J.T. Hupp, Optical properties of metal nanoshells . J. Phys. Chem. B, 108(4), p. 1224-1229 (2004).
https://doi.org/10.1021/jp036301n
 
41.    Y. Sun, B. Mayers and Y. Xia, Metal nanostructures with hollow interiors . Adv. Mater. 15(7-8), p. 641-646 (2003).
https://doi.org/10.1002/adma.200301639
 
42.    B.G. Prevo, S.A. Esakoff, A. Mikhailovsky and J.A. Zasadzinski, Scalable routes to gold nanoshells with tunable sizes and response to near-infrared pulsed-laser irradiation . Small, 4(8), p. 1183-1195 (2008).
https://doi.org/10.1002/smll.200701290
 
43.    L. Olofsson, T. Rindzevicius, I. Pfeiffer, M. Käll and Fredrik Höök, Surface-based gold-nanoparticle sensor for specific and quantitative DNA hybridization detection . Langmuir, 19(24), p. 10414-10419 (2003).
https://doi.org/10.1021/la0352927
 
44.    K. Fujiwara, H. Watarai, H. Itoh, E. Nakahama and N. Ogawa, Measurement of antibody binding to protein immobilized on gold nanoparticles by localized surface plasmon spectroscopy . Anal. Bioanal. Chem. 386, p. 639-644 (2006).
https://doi.org/10.1007/s00216-006-0559-2