Semiconductor Physics, Quantum Electronics & Optoelectronics. 2016. V. 19, N4. P. 399-403.
DOI: https://doi.org/10.15407/spqeo19.04.399

References

1.    S.S. Agasti, A. Chompoosor, C.-C. You, P. Ghosh, C.K. Kim, V.M. Rotello, Photoregulated release of caged anticancer drugs from gold nanoparticles . J. Am. Chem. Soc. 131(16), p. 5728-5729 (2009).
https://doi.org/10.1021/ja900591t
 
2.    B. Kang, M.A. Mackey and M.A. El-Sayed, Nuclear targeting of gold nanoparticles in cancer cells induces DNA damage, causing cytokinesis arrest and apoptosis . J. Am. Chem. Soc. 132(5), p. 1517-1519 (2010).
https://doi.org/10.1021/ja9102698
 
3.    S.Y. Park, D. Stroud, Surface-enhanced plasmon splitting in a liquid-crystal-coated gold nanoparticle . Phys. Rev. Lett. 94, p. 217401 (2005).
https://doi.org/10.1103/PhysRevLett.94.217401
 
4.    R. Pratibha, K. Park, I.I. Smalyukh, W. Park, Tunable optical metamaterial based on liquid crystal-gold nanosphere composite . Opt. Exp. 17, p. 19459-19469 (2009).
https://doi.org/10.1364/OE.17.019459
 
5.    D.F. Gardner, J.S. Evans, I.I. Smalyukh, Towards reconfigurable optical metamaterials: Colloidal nanoparticle self-assembly and self-alignment in liquid crystals . Mol. Cryst. Liq. Cryst. 545, p. 3[1227]–21[1245] (2011).
 
6.    R. Pratibha, K. Park, W. Park, I.I. Smalyukh, Colloidal gold nanoparticle dispersions in smectic liquid crystals and thin nanoparticle-decorated smectic films . J. Appl. Phys. 107, 063511 (2010).
https://doi.org/10.1063/1.3330678
 
7.    J. Prakash, A. Choudhary, A. Kumar, D.S. Mehta, A.M. Biradar, Nonvolatile memory effect based on gold nanoparticles doped ferroelectric liquid crystal . Appl. Phys. Lett. 93, 112904 (2008).
https://doi.org/10.1063/1.2980037
 
8.    A. Kumar, J. Prakash, D.S. Mehta, A.M. Biradar, W. Haase, Enhanced photoluminescence in gold nanoparticles doped ferroelectric liquid crystals . Appl. Phys. Lett. 95, 023117 (2009).
https://doi.org/10.1063/1.3179577
 
9.    S. Kaur, S.P. Singh, A.M. Biradar, A. Choudhary, K. Sreenivas, Enhanced electro-optical properties in gold nanoparticles doped ferroelectric liquid crystals . Appl. Phys. Lett. 95, 023120 (2009).
 
10.    A. Acreman, M. Kaczmarek, G. D'Alessandro, Gold nanoparticle liquid crystal composites as a tunable nonlinear medium . Phys. Rev. E, 90, 012504 (2014).
https://doi.org/10.1103/PhysRevE.90.012504
 
11.    L.-H. Hsu, K.-Y. Lo, S.-A. Huang, C.-Y. Huang, and Ch.-S. Yang, Irreversible redshift of transmission spectrum of gold nanoparticles doped in liquid crystals . Appl. Phys. Lett. 92, 181112 (2008).
https://doi.org/10.1063/1.2926658
 
12.    P. Kopčansky, N. Tomašovicova, M. Koneracka et al., Structural phase transition in liquid crystal doped with gold nanoparticles . Acta Physica Polonica A, 118(5), p. 988-989 (2010).
https://doi.org/10.12693/APhysPolA.118.988
 
13.    A.Choudhary, G. Singh, A.M. Biradar, Advances in gold nanoparticle – liquid crystal composites . Nanoscale, 6, p. 7743-7756 (2014).
https://doi.org/10.1039/c4nr01325e
 
14.    R. Montazamia, C.M. Spillmann, J. Naciri, B.R. Ratna, Enhanced thermomechanical properties of a nematic liquid crystal elastomer doped with gold nanoparticles . Sensors and Actuators A, 178, p. 175-178 (2012).
https://doi.org/10.1016/j.sna.2012.01.026
 
15.    M. Lenart, R.F. Turchiello, G.F. Goya, S.L. Gomez, Enhanced thermal lens effect in gold nanoparticle-doped lyotropic liquid crystal by nanoparticle clustering probed by Z-scan technique . Braz. J. Phys. 45, p. 213-218 (2015).
https://doi.org/10.1007/s13538-015-0301-7
 
16.    Y.M. Yevdokimov, S.G. Skuridin, V.I. Salyanov, V.I. Popenko, V.M. Rudoy, O.V. Dement'eva, E.V. Shtykova, A dual effect of Au-nanoparticles on nucleic acid cholesteric liquid-crystalline particles . J. Biomat. and Nanobiotech. 2, p. 461-471 (2011).
https://doi.org/10.4236/jbnb.2011.24056
 
17.    A.J. Twarowski, A.C. Albrecht, Depletion layer in organic films: Low frequency measurements in polycrystalline tetracene . J. Chem. Phys. 70(5), p. 2255-2261 (1979).
https://doi.org/10.1063/1.437729
 
18.    A.V. Koval'chuk, Relaxation processes and charge transport across liquid crystal – electrode interface . J. Phys.: Condensed Matter, 13, N 24, p. 10333-10345 (2001).
https://doi.org/10.1088/0953-8984/13/46/306
 
19.    A.V. Koval'chuk, Low and infra-low dielectric spectroscopy liquid crystal-solid state interface. Sliding layers . Ukr. J. Phys. 41(10), p. 991-998 (1996).
 
20.    E. Barsukov, J.R. Macdonald, Impedance Spectroscopy. Theory, Experiment and Applications. New Jersey, John Wiley & Sons Inc., 2005.
https://doi.org/10.1002/0471716243
 
21.    I.P. Studenyak, P.Yu. Demko, A.V. Bendak et al., Influence of superionic nanoparticles Cu6PS5I on dielectric properties of nematic liquid crystal 6CHBT . Semiconductor Physics, Quantum Electronics & Optoelectronics, 18, N 2, p. 205-208 (2015).
https://doi.org/10.15407/spqeo18.02.205