Semiconductor
Physics, Quantum Electronics & Optoelectronics. 2016. V. 19,
N4. P. 399-403. https://doi.org/10.1021/ja900591t 2. B. Kang, M.A. Mackey and M.A. El-Sayed, Nuclear targeting of gold nanoparticles in cancer cells induces DNA damage, causing cytokinesis arrest and apoptosis . J. Am. Chem. Soc. 132(5), p. 1517-1519 (2010). https://doi.org/10.1021/ja9102698 3. S.Y. Park, D. Stroud, Surface-enhanced plasmon splitting in a liquid-crystal-coated gold nanoparticle . Phys. Rev. Lett. 94, p. 217401 (2005). https://doi.org/10.1103/PhysRevLett.94.217401 4. R. Pratibha, K. Park, I.I. Smalyukh, W. Park, Tunable optical metamaterial based on liquid crystal-gold nanosphere composite . Opt. Exp. 17, p. 19459-19469 (2009). https://doi.org/10.1364/OE.17.019459 5. D.F. Gardner, J.S. Evans, I.I. Smalyukh, Towards reconfigurable optical metamaterials: Colloidal nanoparticle self-assembly and self-alignment in liquid crystals . Mol. Cryst. Liq. Cryst. 545, p. 3[1227]–21[1245] (2011). 6. R. Pratibha, K. Park, W. Park, I.I. Smalyukh, Colloidal gold nanoparticle dispersions in smectic liquid crystals and thin nanoparticle-decorated smectic films . J. Appl. Phys. 107, 063511 (2010). https://doi.org/10.1063/1.3330678 7. J. Prakash, A. Choudhary, A. Kumar, D.S. Mehta, A.M. Biradar, Nonvolatile memory effect based on gold nanoparticles doped ferroelectric liquid crystal . Appl. Phys. Lett. 93, 112904 (2008). https://doi.org/10.1063/1.2980037 8. A. Kumar, J. Prakash, D.S. Mehta, A.M. Biradar, W. Haase, Enhanced photoluminescence in gold nanoparticles doped ferroelectric liquid crystals . Appl. Phys. Lett. 95, 023117 (2009). https://doi.org/10.1063/1.3179577 9. S. Kaur, S.P. Singh, A.M. Biradar, A. Choudhary, K. Sreenivas, Enhanced electro-optical properties in gold nanoparticles doped ferroelectric liquid crystals . Appl. Phys. Lett. 95, 023120 (2009). 10. A. Acreman, M. Kaczmarek, G. D'Alessandro, Gold nanoparticle liquid crystal composites as a tunable nonlinear medium . Phys. Rev. E, 90, 012504 (2014). https://doi.org/10.1103/PhysRevE.90.012504 11. L.-H. Hsu, K.-Y. Lo, S.-A. Huang, C.-Y. Huang, and Ch.-S. Yang, Irreversible redshift of transmission spectrum of gold nanoparticles doped in liquid crystals . Appl. Phys. Lett. 92, 181112 (2008). https://doi.org/10.1063/1.2926658 12. P. Kopčansky, N. Tomašovicova, M. Koneracka et al., Structural phase transition in liquid crystal doped with gold nanoparticles . Acta Physica Polonica A, 118(5), p. 988-989 (2010). https://doi.org/10.12693/APhysPolA.118.988 13. A.Choudhary, G. Singh, A.M. Biradar, Advances in gold nanoparticle – liquid crystal composites . Nanoscale, 6, p. 7743-7756 (2014). https://doi.org/10.1039/c4nr01325e 14. R. Montazamia, C.M. Spillmann, J. Naciri, B.R. Ratna, Enhanced thermomechanical properties of a nematic liquid crystal elastomer doped with gold nanoparticles . Sensors and Actuators A, 178, p. 175-178 (2012). https://doi.org/10.1016/j.sna.2012.01.026 15. M. Lenart, R.F. Turchiello, G.F. Goya, S.L. Gomez, Enhanced thermal lens effect in gold nanoparticle-doped lyotropic liquid crystal by nanoparticle clustering probed by Z-scan technique . Braz. J. Phys. 45, p. 213-218 (2015). https://doi.org/10.1007/s13538-015-0301-7 16. Y.M. Yevdokimov, S.G. Skuridin, V.I. Salyanov, V.I. Popenko, V.M. Rudoy, O.V. Dement'eva, E.V. Shtykova, A dual effect of Au-nanoparticles on nucleic acid cholesteric liquid-crystalline particles . J. Biomat. and Nanobiotech. 2, p. 461-471 (2011). https://doi.org/10.4236/jbnb.2011.24056 17. A.J. Twarowski, A.C. Albrecht, Depletion layer in organic films: Low frequency measurements in polycrystalline tetracene . J. Chem. Phys. 70(5), p. 2255-2261 (1979). https://doi.org/10.1063/1.437729 18. A.V. Koval'chuk, Relaxation processes and charge transport across liquid crystal – electrode interface . J. Phys.: Condensed Matter, 13, N 24, p. 10333-10345 (2001). https://doi.org/10.1088/0953-8984/13/46/306 19. A.V. Koval'chuk, Low and infra-low dielectric spectroscopy liquid crystal-solid state interface. Sliding layers . Ukr. J. Phys. 41(10), p. 991-998 (1996). 20. E. Barsukov, J.R. Macdonald, Impedance Spectroscopy. Theory, Experiment and Applications. New Jersey, John Wiley & Sons Inc., 2005. https://doi.org/10.1002/0471716243 21. I.P. Studenyak, P.Yu. Demko, A.V. Bendak et al., Influence of superionic nanoparticles Cu6PS5I on dielectric properties of nematic liquid crystal 6CHBT . Semiconductor Physics, Quantum Electronics & Optoelectronics, 18, N 2, p. 205-208 (2015). https://doi.org/10.15407/spqeo18.02.205 |