Semiconductor
Physics, Quantum Electronics & Optoelectronics. 2016. V. 19,
N4. P. 404-416. https://doi.org/10.1016/S0006-3495(01)75935-8 2. J.M. Bueno, J. Jaronski, Spatially resolved polarization properties for in vitro corneas . Ophthal., Physiol. Opt. 21, No. 5, p. 384-392 (2001). https://doi.org/10.1046/j.1475-1313.2001.00601.x 3. M.H. Smith, Interpreting Mueller matrix images of tissues . Proc. SPIE, 4257, p. 82-89 (2001). https://doi.org/10.1117/12.434690 4. M.H. Smith, P. Burke, A. Lompado, E. Tanner, L.W. Hillman, Mueller matrix imaging polarimetry in dermatology . Proc. SPIE, 3991, p. 210-216 (2000). https://doi.org/10.1117/12.384904 5. J.M. Bueno, F. Vargas-Martin, Measurements of the corneal birefringence with a liquid-crystal imaging polariscope . Appl. Opt. 41, p. 116-124 (2002). https://doi.org/10.1364/AO.41.000116 6. T.T. Tower, R.T. Tranquillo, Alignment maps of tissues: II. Fast harmonic analysis for imaging . Biophys. J. 81, p. 2964-2971 (2001). https://doi.org/10.1016/S0006-3495(01)75936-X 7. M. Shribak and R. Oldenbourg, Techniques for fast and sensitive measurements of two-dimensional birefringence distributions . Appl. Opt. 42, p. 3009-3017 (2003). https://doi.org/10.1364/AO.42.003009 8. S.N. Savenkov, V.V. Marienko, E.A. Oberemok, O.I. Sydoruk, Generalized matrix equivalence theorem for polarization theory . Phys. Rev. E, 74, p. 605-607 (2006). https://doi.org/10.1103/PhysRevE.74.056607 9. S.-Y. Lu, R.A. Chipman, Interpretation of Mueller matrices based on polar decomposition . J. Opt. Soc. Am. A, 13, p. 1106-1113 (1996). https://doi.org/10.1364/JOSAA.13.001106 10. A.G. Ushenko and V.P. Pishak, Laser Polarimetry of Biological Tissue: Principles and Applications, in: Handbook of Coherent-Domain Optical Methods: Biomedical Diagnostics, Environmental and Material Science, Vol. 1, p. 93-138, ed. by V.V. Tuchin. Kluwer Academic Publishers, 2004. 11. Yu.A. Ushenko, T.M. Boychuk, V.T. Bachynsky, O.P. Mincer, Diagnostics of structure and physiological state of birefringent biological tissues: Statistical, correlation and topological approaches, in: Handbook of Coherent-Domain Optical Methods. Springer Science+Business Media, New York, 2013, p. 107-148. 12. A.G. Ushenko, D.N. Burkovets, Yu.A. Ushenko, Polarization phase mapping and reconstruction of biological tissue architectonics during diagnosis of pathological lesion . Optics and Spectroscopy, 93(3), 449-456 (2002). https://doi.org/10.1134/1.1509829 13. V.A. Ushenko, M.P. Gorsky, Complex degree of mutual anisotropy of linear birefringence and optical activity of biological tissues in diagnostics of prostate cancer . Optics and Spectroscopy, 115(2), 290-297 (2013). https://doi.org/10.1134/S0030400X13080171 14. Yu.A. Ushenko, M.P. Gorskii, A.V. Dubolazov, A.V. Motrich, V.A. Ushenko, M.I. Sidor, Spatial-frequency Fourier polarimetry of the complex degree of mutual anisotropy of linear and circular birefringence in the diagnostics of oncological changes in morphological structure of biological tissues . Quantum Electronics, 42(8), p. 727 (2012). https://doi.org/10.1070/QE2012v042n08ABEH014825 15. A. Ushenko, S. Yermolenko, A. Prydij et al., Statistical and fractal approaches in laser polarimetry diagnostics of the cancer prostate tissues . Proc. SPIE, 7008, art. no. 70082C (2008). 16. O.V. Angelsky, A.G. Ushenko, Y.G. Ushenko, Complex degree of mutual polarization of biological tissue coherent images for the diagnostics of their physiological state . J. Biomed. Opt. 10(6), p. 060502-060502-3 (2005). https://doi.org/10.1117/1.2149844 17. A.G. Ushenko, Laser diagnostics of biofractals . Quantum Electronics, 29(12), p. 1074-1077 (1999). https://doi.org/10.1070/QE1999v029n12ABEH001635 18. V.A. Holovatsky, O.M. Makhanets, O.M. Voitsekhivska, Oscillator strengths of electron quantum transitions in spherical nanosystems with donor impurity in the center . Physica E: Low-Dimension. Systems and Nanostruct. 41(8), p. 1522-1526 (2009). 19. M.D. Pérez-Cárceles, J. Noguera, J.L. Jiménez, P. Martínez, A. Luna, E. Osuna, Diagnostic efficacy of biochemical markers in diagnosis post-mortem of ischaemic heart disease . Forensic Sci. Int. 142, p. 1-7 (2004). https://doi.org/10.1016/j.forsciint.2004.02.007 20. F. Martínez Díaz, M. Rodríguez-Morlensín, M.D. Pérez-Cárceles, J. Noguera, A. Luna and E. Osuna, Biochemical analysis and immune-histochemical determination of cardiac troponin for the postmortem diagnosis of myocardial damage . Histol. Histopathol. 20, p. 475-481 (2005). 21. O.V. Angelsky, C.Y. Zenkova, M.P. Gorsky, N.V. Gorodynśka, Feasibility of estimating the degree of coherence of waves at the near field . Appl. Opt. 48(15), p. 2784-2788 (2009). https://doi.org/10.1364/AO.48.002784 22. C.S. Davis, Statistical Methods of the Analysis of Repeated Measurements. New York, Springer-Verlag, 2002, p. 744. 23. A. Petrie, B. Sabin, Medical Statistics at a Glance. Blackwell Publ. 2005, p. 157. 24. O.V. Angel'skii, A.G. Ushenko, A.D. Arkhelyuk, S.B. Ermolenko, D.N. Burkovets, Structure of matrices for the transformation of laser radiation by biofractals . Quantum Electronics, 29(12), p. 1074-1077 (1999). https://doi.org/10.1070/QE1999v029n12ABEH001634 25. O.V. Angel'skii, A.G. Ushenko, A.D. Arkhelyuk, S.B. Ermolenko, D.N. Burkovets, Scattering of laser radiation by multifractal biological structures . Optics and Spectroscopy, 88(3), p. 444-447 (2000). https://doi.org/10.1134/1.626815 26. D. van Beek, B. Funaki, Hemorrhage as a complication of percutaneous liver biopsy . Semin. Intervent. Radiol. Dec 30(4), p. 413-416 (2013). 27. O.V. Angelsky, R.N. Besaha, A.I. Mokhun, I.I. Mokhun, M.O. Sopin, M.S. Soskin, M.V. Vasnetsov . Singularities in vectoral fields . Proc. SPIE, 3904, p. 40 (1999). https://doi.org/10.1117/12.370443 28. N. Boute, O. Gribouval, S. Roselli et al., NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome . Nat. Genet. 24(4), p. 349-354 (2000). https://doi.org/10.1038/74166 29. B.M. Brenner, The Kidney. Brenner and Rector's 8-th Ed. 2007. 30. Y.T. Chen, A. Kobayashi, K.M. Kwan et al., Gene expression profiles in developing nephrons using Lim1 metanephric mesenchyme-specific conditional mutant mice . BMC Nephrol. 7, issue 1, Article 1 (2006). https://doi.org/10.1186/1471-2369-7-1 31. P.N. Hawkins, Serum amyloid P component scintigraphy for diagnosis and monitoring amyloidosis . Curr. Opin. Nephrol. Hypertens. 11, p. 649-655 (2002). https://doi.org/10.1097/00041552-200211000-00013 32. B.G. Hudson, K. Tryggvason, M. Sundaramoorthy, E.G. Neilson, Alport's syndrome, Goodpasture's syndrome, and type IV collagen . N. Engl. J. Med. 348, p. 2543-2556 (2003). https://doi.org/10.1056/NEJMra022296 33. KDIGO 2012 Clinical Practice Guidelines for the Evaluation and Management of Chronic Kidney Disease . Kidney Int. Suppl. 3, Issue 1 (2013). 34. V.A. Ushenko, M.I. Sidor, Y.F. Marchuk, N.V. Pashkovskaya, D.R. Andreichuk, Azimuth-invariant Mueller-matrix differentiation of the optical anisotropy of biological tissues . Optics and Spectroscopy, 117(1), p. 152-157 (2014). https://doi.org/10.1134/S0030400X14070248 35. V.A. Ushenko, N.I. Zabolotna, S.V. Pavlov, D.M. Burcovets, O.Yu. Novakovska, Mueller-matrices polarization selection of two-dimensional linear and circular birefringence images . Proc. SPIE, 9066, Eleventh International Conference on Correlation Optics, 90661X (2013). https://doi.org/10.1117/12.2023604 36. V.A. Ushenko, M.P. Gorsky, Complex degree of mutual anisotropy of linear birefringence and optical activity of biological tissues in diagnostics of prostate cancer . Optics and Spectroscopy, 115(2), p. 290-297 (2013). https://doi.org/10.1134/S0030400X13080171 37. Yu.A. Ushenko, M.P. Gorsky, A.V. Dubolazov, A.V. Motrich, V.A. Ushenko, M.I. Sidor, Spatial-frequency Fourier polarimetry of the complex degree of mutual anisotrospy of linear and circular birefringence in the diagnostics of oncological changes in morphological structure of biological tissues . Quantum Electronics, 42(8), p. 727 (2012). https://doi.org/10.1070/QE2012v042n08ABEH014825 38. V.A. Ushenko, Complex degree of mutual coherence of biological liquids, in: ROMOPTO International Conference on Micro- to Nano-Photonics III (pp. 88820V-88820V), International Society for Optics and Photonics, 2013. https://doi.org/10.1117/12.2032668 39. F. Brion, B. Marc, F. Launay, Postmortem interval estimation by creatinine levels in human psoas muscle . Forensic Sci. Int. 52(1), p. 113-120 (1991). https://doi.org/10.1016/0379-0738(91)90103-P 40. L.D. Cassidy, Basic concepts of statistical analysis for surgical research . J. Surgical Res. 128, p. 199-206 (2005). https://doi.org/10.1016/j.jss.2005.07.005 41. Yu.O. Ushenko, O.V. Dubolazov, A.O. Karachevtsev, M.P. Gorsky, Y.F. Marchuk, Wavelet analysis of Fourier polarized images of the human bile . Appl. Opt. 51(10), p. C133-C139 (2012). https://doi.org/10.1364/AO.51.00C133 42. Yu.A. Ushenko, V.A. Ushenko, A.V. Dubolazov, V.O. Balanetskaya, N.I. Zabolotna, Mueller-matrix diagnostics of optical properties of polycrystalline networks of human blood plasma . Optics and Spectroscopy, 112(6), p. 884-892 (2012). https://doi.org/10.1134/S0030400X12050232 43. Yu.A. Ushenko, Yu.Ya. Tomka, A.V. Dubolazov, Laser diagnostics of anisotropy in birefringent networks of biological tissues in different physiological conditions . Quantum Electronics, 41(2), p. 170-175 (2011). https://doi.org/10.1070/QE2011v041n02ABEH014215 44. Yu.A. Ushenko, A.V. Dubolazov, V.O. Balanetskaya, A.O. Karachevtsev, V.A. Ushenko, Wavelet-analysis of polarization maps of human blood plasma . Optics and Spectroscopy, 113(3), p. 332-343 (2012). https://doi.org/10.1134/S0030400X12070260 |