Semiconductor
Physics, Quantum Electronics & Optoelectronics. 2016. V. 19,
N4. P. 427-429. https://doi.org/10.1016/j.snb.2005.05.009 2. D. Xie, Y.D. Jiang, W. Pan, D. Li, Z.M. Wu, Y.R. Li, Fabrication and characterization of polyaniline-based gas sensor by ultra-thin film technology . Sensors and Actuators B, 81, p. 158-164 (2002). https://doi.org/10.1016/S0925-4005(01)00946-7 3. V. Saxena, S. Choudhury, S.C. Gadkari, S.K. Gupta, J.V. Yakhmi, Room temperature operated ammonia gas sensor using polycarbazole Langmuir–Blodgett film . Sensors and Actuators B, 107, p. 277-282 (2005). https://doi.org/10.1016/j.snb.2004.10.011 4. N.T. Kemp, A.B. Kaiser, H.J. Trodahl, B. Chapman, R.G. Buckley, A.C. Partridge, P.J.S. Foot, Effect of ammonia on the temperature-dependent conductivity and thermopower of polypyrrole . J. Polym. Sci. B, 44, p. 1331-1338 (2006). https://doi.org/10.1002/polb.20792 5. C.W. Lin, B.J. Hwang, C.R. Lee, Characteristics and sensing behavior of electrochemically codeposited polypyrrole-poly(vinyl alcohol) thin film exposed to ethanol vapors . J. Appl. Polym. Sci. 73, p. 2079-2087 (1999). https://doi.org/10.1002/(SICI)1097-4628(19990912)73:11<2079::AID-APP3>3.0.CO;2-1 6. S. Sharma, C. Nirkhe, S. Pethkar, A.A. Athawale, Chloroform vapour sensor based on copper/polyaniline nanocomposite . Sensors and Actuators B, 85, p. 131-136 (2002). https://doi.org/10.1016/S0925-4005(02)00064-3 7. M.C. Gallazzi, L. Tassoni, C. Bertarelli, G. Pioggia, F. Di Francesco, E. Montoneri, Poly(alkoxy-bithiophenes) sensors for organic vapours . Sensors and Actuators B, 88, p. 178-189 (2003). https://doi.org/10.1016/S0925-4005(02)00323-4 8. V. Syritski, J. Reut, A. Öpik, K. Idla, Environmental QCM sensors coated with polypyrrole . Synth. Met. 102, p. 1326-1327 (1999). https://doi.org/10.1016/S0379-6779(98)01047-9 9. A.C. Partridge, M.L. Jansen, W.M. Arnold, Conducting polymer-based sensors . Mater. Sci. Eng. C, 12, p. 37-42 (2000). https://doi.org/10.1016/S0928-4931(00)00155-7 10. G.E. Collins, L.J. Buckley, Conductive polymer-coated fabrics for chemical sensing . Synth. Met. 78, p. 93-101 (1996). https://doi.org/10.1016/0379-6779(96)80108-1 11. I. Kruglenko, B. Snopok, Non-exponential relaxations in sensor arrays: forecasting strategy for electronic nose performance . Sensors and Actuators B: Chem. 106, p. 101-113 (2005). https://doi.org/10.1016/j.snb.2004.05.064 12. B.A. Snopok, I.V. Kruglenko, Multisensor systems for chemical analysis: state-of-the-art in Electronic Nose technology and new trends in machine olfaction . Thin Solid Films, 418(1), p. 21-41 (2002). https://doi.org/10.1016/S0040-6090(02)00581-3 13. Julia Burlachenko, Ivanna Kruglenko, Boris Snopok, Krishna Persaud, Sample handling for electronic nose technology: State of the art and future trends . Trends in Analytical Chemistry, 82, p. 222-236 (2016). https://doi.org/10.1016/j.trac.2016.06.007 |