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1. Introduction  

Already several decades, physics of quasi-zerodimension 
semiconductor clusters (nanocrystals, quantum dots) 
causes evident interest of researchers [1, 2]. Low 
dimensions of the system evoke a number of interesting 
changes of physical characteristics inherent to crystals. 
Among their numerous properties, one can obtain 
discrete structure of the electron, hole and exciton 
energy spectrum. The main condition must be true – 
nanocrystal size is smaller than radius of Wannier–Mott 
exciton in bulk crystals [2-5]. During investigation, 
quasi-particle energy levels, spectroscopy methods play 
an important role. Currently, detailed researches confirm 
the strength quantum restriction particle regime 
existence in nanocrystals. 

In this study, a significant place is paid to 
heterostructures with CdS quantum dots (QDs). These 
QDs can substitute organic substance in the biologic 
sensors and be used in other optical electronic devices. 
Therefore, in recent years many researchers paid 
attention to elaborate new technology to produce high-
quality and stable CdS QDs in solid state and polymer 
matrixes. 

Many works [4-14] are devoted to investigations of 
CdS nanocrystal photoluminescence properties. It was 
shown that CdS QDs in polymer matrix contain their 
own defects of two types. It indicated by red and green 
region luminescence. It was determined that defects 
CdiVCd-VS are reason for the existence mentioned optic 
bands in bulk CdS crystals. The analyses of 
experimental data show that the physical nature of the 
matrix does not influence on the type of radiation centers 
in QD [15, 16]. But it was shown that the matrix plays a 
significant role in the process of luminescence 
stimulating. Specifically, the gelatin presence strongly 
increases the intensity of red luminescence. 

The heretosystem interfaces play an important role 
in optical properties of QD system. Reducing the size of 
QDs is accompanied by the increasing role of surfaces in 
absorption and luminescence spectra. In many physical 
situations, the red part of radiation spectrum is not caused 
by the interband transitions, but caused by electrons 
transition with participation of surface traps [14].  

In majority of works devoted QD luminescence 
phenomenon various reasons for the surface states 
appearance were considered. Among them, it was 
discussed availability of broken bonds as well as absorbed 
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atoms in the systems [11-12]. Another reason for 
appearance of surface states is interaction of charged 
particles and coupling surface charges at the 
heterostructure interfaces [17-18]. The physical conditions 
for manifestation of these states are studied less. 

In this paper, we study CdS/SiO2 heterostructure 
with spherical QDs. The energy of interface states has 
been calculated. Models of abrupt and fluent coordinate 
changes of a dielectric permittivity near surface of QD 
were considered. The effect of interface states on the 
interlevel absorption coefficient has been studied. 

2. Potential energy of the charged particle in 
QD/matrix heterosystem  

Let us consider heterosystem consisting of a dielectric or 
semiconductor matrix that contains spherical QDs. 
Every charged particle is characterized by its own 
effective mass in each medium ( ∗∗

21 , mm ). The media are 

described by their own dielectric permittivity ( 21 , εε ). 
Modern technology enables to obtain sufficient 

quality of semiconductor and dielectric 
nanoheterostructures. In reality, it is difficult to create a 
heterogeneous system with sharp changes in all physical 
parameters at the interface, where particle’s coordinate 
r = a (а is the QD radius). There is always an 
intermediate layer, in which a particular physical 
parameter (particle’s effective mass, dielectric constant) 
varies in its value from one crystal to another. 

2.1. Heterosystem with the sharply varying dielectric 
permittivity at the interface 

We simplify the model by assuming that in the point r = a 
the dielectric permittivity is abruptly varied. That is 

( ) ( ) ( ) ,,21 ararrar ≥−θε+−θε=ε    (1) 

where θ(x) is the Heaviside function. The potential in the 
system QD/matrix can be found, if one solves the 
Poisson and Laplace equations as in [15]: 
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where 0, rr
rr

 are the radius-vectors of an arbitrary point 
in the space and the particle, respectively. As known, 
bound charges can arise at the interfaces of the 
nonhomogeneous environment. The can obtain surface 
density of these charges by using the polarization 
boundary condition: 
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The potential energy of q = 1 charge interacting 
with surface bound charges, arising from the existence 
of the same charge, is determined by the formula [15]: 
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where F is the hypergeometric function. Analysis of (4) 
shows that, for the small particle distance to the 
interface, the first term is valid in both situations: if 
r < a or r > a. In addition, the function Vp(r) includes a 
non-physical discontinuity in the point r = a. If the 
inequality ε1 > ε2 is true, then the potential Vp(r) can be 
represented by the function like to that in Fig. 1. 
Otherwise, the coordinate dependence of the potential 
changes. It will be characterized by the opposite sign. 

2.2. Heterosystem with the smoothly varying dielectric 
permittivity at the interface 

Let at the interface exists an intermediate layer where 
dielectric permittivity changes from its value in QD to 
the corresponding matrix value. In this case, one may 
repeat calculation of [16] and obtain the potential energy 
of interaction of the charged particle and polarization 
charges in the following look: 
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Based on the formula (5), the analysis shows that 
the width of the intermediate layer is close to the lattice 
parameter a0, when L ≤ 1/4a0. In Figs. 1 and 2, the 
potential Vp(r) based on the expressions (4) and (5) is 
shown as a function of the coordinate r. 

3. Schrödinger equation of the charged particle 
(electron) in the heterosystem 

We consider the electron of CdS spherical QD in the 
matrix SiO2. We write the Hamiltonian of the system 
using Hartree units (m0 = 1, � = 1, e = 1): 
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( ) ( ) ( )rVrU
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1
2
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where the confinement potential is 
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and the potential energy Vp(r) is expressed by (4) or (5). 
Taking into account the view of total potential energy 

(U(r)+Vp(r)) as the function of the coordinate r, it can be 
assumed that the charge can be localized both in the 
middle and outside QD. 

At first, we solve the Schrödinger equation (SE) 
with the Hamiltonian (8) and potential (4) (a self-action 
potential). Since the self-action potential contains 
discontinuity in the point r = a, we solve SE alone in the 
middle and outside QD. 

Let the electron is in QD. Under the guide of the 
self-action potential, the charge cannot go beyond QDs. 

   

   
Fig. 1. Potential (4) for different values of the QD radius. 

   

   
Fig. 2. Potential (5) for different values of the QD radius. 
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So, we replace the finite potential (9) by an infinite one. 
The self-action potential in SE is a small perturbation. In 
zeroth approximation, this equation has an analytical 
solution: 
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knl is n-th zero of spherical Bessel function jl (x). The 
self-action potential can be considered as a first 
approximation of the perturbation theory. Therefore, 
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The electron can be also outside QD in the so-
called polarization trap. We use the variational Ritz 
method to determine the ground state particle energy. 
The variation trial function 
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with the variational parameter α allows calculating the 
particle energy .10

outE The plots of particle energy 
dependences versus the QD radius are shown in Fig. 3. 
These plots show that for the selected model the electron 
energy of the state (13) is higher than that of outward 
bound state (10). Moreover, we have obtained different 
QD radius dependences of the electron energy in the 
considered states. So, if the energy 2

0,1 ~ −aEin , the 

energy outE 0,1  is characterized by a weak radius change. 
Calculations have shown that reducing the QD radius 
involves a reduction of min α. It means the increase of 
the electron average distance to the QD surface. So, at 
small radius (a < 10 Е) outward bound electron state 
disappears. It is possible under certain conditions 
quantum transition of electron from the external to 
internal states, if a > 10 Е. 
 
 
 

 
 

Fig. 3. Electron energy of the ground state Ein (1), Eout (2). 

 
Fig. 4. Electron energy of the ground state Ein (1), Eout (2) 
obtained using the potentials (5) and (9). Horizontal dashed 
line corresponds to U0 (9). 
 
 
 

It is opportunity to do analysis of SE for the model 
with potentials (9) and (5). We take into account that the 
potential (5) is the small perturbation in this problem. In 
zeroth approximation, the solution of SE can be written 
as in [16] 

( ) ( ) ( )
( )
( ) ( ) ,

,/k

,/j
,

,,

,,

,,;,,;

eml
eelnlln

eelnlln

emlelneemlne

Y
ararxB

ararkA

YrRr

Ω×
⎪⎩

⎪
⎨
⎧

>

≤
=

=Ω=ψ
r

  (14) 

where  
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*
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*
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and jl(x), kl(x) are the spherical Bessel functions. We 
found the electron energy from the boundary conditions 
(without discontinuity in the wave functions and 
probability density flux on the QD surface). In this 
approach, electron even in the ground state with a certain 
probability can penetrate from QD into the matrix, 
because the wave function “tail” is not equal zero in the 
matrix space due to finite particle confinement. As in the 
previous part of the paper, the electron energy has found 
using the perturbation theory: 

lnVlnEE plneln ,,,;, +=  . (15) 

If electron is outside QD (in the polarization trap), 
the variational problem can be also solved. In this case, 
the trial function of s-type was chosen in the form 
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Choosing the wave function in the form (16) 
provides decreasing the wave function versus the 
distance from a boundary of QD in both directions (a 
bound interface state of electron). 

In Fig. 4, one can see the dependence of the 
electron energy on the radius of QD for the inside (14) 
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and outside (16) problems. As seen in Fig. 4, the energy 
of bound electron (curve 2) is higher than that of the 
electron ground state. This result is similar to that of the 
previous model. But there is a quantitative difference. As 
Fig. 4 shows, for a = 20 Е the electron energy of the 
ground state ~0.4 eV and of the bound interface state 
~2 eV. The similar energy values for the first model 
(Fig. 3) are 0.5 eV and 2.7 eV. We have a considerable 
energy difference. 

For future investigation, we will calculate the 
energies and wave functions p-types of the electron in 
polarization trap. This trial function can be chosen like 
to (16): 
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Minimizing the corresponding functional, one 
obtains the electron energy and wave function of the 
bound interface p-state. The same calculations can be 
also carried out for inside problem by using Exps (14) 
and (15). The electron energy of all these states are 
monotonous functions of the DQ radius (Fig. 5). We 
obtain the degeneracy of the electron spectrum in QD for 
the fixed radii: a = 20, 32, 43 Е and so on. 

4. Interlevel transitions and light absorption  
of the heterosystem 

Let the heterosystem is irradiated by the linearly 
polarized light along z direction. Then, in the dipole 
approximation the interlevel transitions are possible 
between states where Δl = ±1 and Δm = 0. For the QD 
radius 18 Е (exciton radius CdS is equal 16.9 Е), we 
calculate the energy levels and show all the possible 
transitions in Fig. 6. In this case, there possible are 8 
transitions that are caused of absorption of light. 
Therefore, the density matrix and iterative procedure 
were applied to derive the absorption coefficient [19-21]. 
In this approach, the linear absorption coefficient can be 
expressed as 
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where ε0 is the electric constant of vacuum, μ0 – 
magnetic constant of vacuum, c – light speed, �Γ is the 
scattering rate caused by the electron-phonon interaction 
and some other factors of scattering. If T ≈ 4 K and �Γ 
limits to zero, one can obtain: 
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N ≈ 3�1016 cm–3 is carrier concentration.  

In practice, QDs sets are obtained as located in a 
crystal or polymer matrix. Whatever method of 
cultivation is used, the set of QDs is always 
characterized by the size dispersion. Let the QD size 
distribution is approximated by the Gauss function: 
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where a is the QD radius (variable), s – halfwidth of the 
distribution (20), which is expressed by the average 
radius a  and value σ that is considered as the variance 
in the QD sizes expressed in percent: 100/σ= as . By 
regarding the QD dispersion (20), the absorption 
coefficient can be obtained for the QDs set by using the 
following expression 
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Fig. 5. Electron energies of the ground and excited p-states in 
the hererosystem. 
 
 
 
 

 
 
Fig. 6. Quantum transitions in the heterosystem. Average 
radius of QD is 18 Е. 
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Fig. 7. Light absorption coefficient of the heterosystem. 
Average radius of QD is 18 Е, σ = 3%. 
 
 
 

With account of delta-function properties, one can 
obtain: 
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where a0i are simple zeros of the function 
( )ω−−= h)()()( aEaEaF mn . Therefore, 
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The dependence of the absorption coefficient on 
the energy of light quanta for the QD average radius and 
dispersion σ = 3% was plotted using the expression (22). 
Fig. 7 shows coefficients of light absorption for all 
possible transition cases. The plots show narrow 
absorption bands. If σ = 10%, the absorption bands 
become wide, that is why 1pin→1din and 2sin→pout; 
1pin→2sin and 1din→pout; 1pin→sout and 1sin→pout begin 
merge. In both cases, σ = 3% and 10% one can observe 
the absorption band caused by the transition from the 
external surface states into the internal ones. But in the 
first case (σ = 3%) there are two bands and in the 
second – one merged band. In all the cases, one can 
differ the absorption bands caused by the interface states 
and QD states. Also, we can signify that this transition 
should effect on the photoluminescence spectra, which 
will be studied in our next works. 
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